科学研究費補助金研究成果報告書

平成24年 5月24日現在

機関番号:	14401
研究種目:	特定領域研究
研究期間:	$2006 \sim 2011$
課題番号:	18071006
研究課題名	(和文) $K_L o \pi^0 u ar{ u}$ 崩壊から探るフレーバー混合と新しい物理
研究課題名	(英文) Search for flavor mixing and new physics with $K_L \to \pi^0 \nu \overline{\nu}$ decay
研究代表者 山中 卓 大阪大学 研究者番	(Yamanaka, Taku) ・大学院理学研究科・教授 号: 20243157

- 研究成果の概要(和文): KEK で行った実験のデータを解析し、中性 K 中間子の CP 対称性を破る $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊に対して $BR < 2.6 \times 10^{-8}$ (90%信頼度) の分岐比の上限値を与えた。 さらに標準理論の予測値に迫る感度で新たな物理の効果を探るために、J-PARC 大強度陽子加速器を用いる新たなビームラインと実験装置を建設した。
- 研究成果の概要(英文): We set an upper limit of $BR < 2.6 \times 10^{-8}$ (90% CL) on the branching ratio of the *CP* violating $K_L \to \pi^0 \nu \overline{\nu}$ decay based on the data taken at KEK. We also built a new beam line and detector components for the J-PARC high intensity proton accelerator to search for the effect of new physics with a sensitivity close to the branching ratio predicted by the standard model.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2006 年度	5,100,000	0	5,100,000
2007 年度	51,200,000	0	51,200,000
2008 年度	109,300,000	0	109,300,000
2009 年度	68,900,000	0	68,900,000
2010 年度	34,500,000	0	34,500,000
2011 年度	9,800,000	0	9,800,000
総計	278,800,000	0	278,800,000

研究分野:素粒子物理学実験

科研費の分野・細目:物理学 ・素粒子・原子核・宇宙線・宇宙物理 キーワード:CP対称性の破れ、K中間子、稀崩壊、大強度陽子加速器、J-PARC

1. 研究開始当初の背景

宇宙がビッグバンで始まり、粒子と反粒子が 同数作られたにもかかわらず、現在宇宙に反粒 子で作られた反物質がほとんどないのは、粒子 と反粒子の間に対称性の破れ (CP 対称性の破 れ)があるためである。小林・益川によって提 唱された理論は、K 中間子や B 中間子におい て観測された CP 対称性の破れについては説明 し、素粒子の標準理論に組込まれたが、宇宙に 反物質がほとんどないことについては効果が小 さく、説明できない。従って、CP 対称性を破 る、標準理論を越える新しい物理があるはずで ある。

そうした CP 対称性を破る新しい物理を探る 一つの方法として、中性 K 中間子の $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊の分岐比を測る方法がある。この崩壊は CP の固有値が –1 の状態から +1 の状態に遷移 するため CP の対称性を破っている。また素粒 子の標準理論ではこの崩壊分岐比は 3×10^{-11} と抑制されており、かつ理論的な不定性も約 2%と小さい。そのため、新しい物理の粒子が この崩壊の中間状態に入って分岐比が標準理論 の予測からずれると、その効果が観測されやす いという特長を持つ。

この $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊は山中らが米国 Fermilab の KTeV 実験で探索し、その崩壊分岐比 に対して $BR(K_L \rightarrow \pi^0 \nu \overline{\nu}) < 5.9 \times 10^{-7}$ (90% 信頼度) の上限値を与えた。また我々は KEK の 12GeV 陽子加速器を用いてこの崩壊に特化 した E391a 実験を行い、解析を行っていた。さ らに、より高い感度で崩壊を探索する為に、建 設中であった J-PARC 大強度陽子加速器施設 で行う新たな実験の提案書を 2006 年 4 月に提 出したところであった。

2. 研究の目的

A01 計画研究班の目的は、中性 K 中間子の $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊を用いて、CP 対称性 (粒子と 反粒子の対称性)を破る、標準理論を超える新 しい物理を探すことである。

3. 研究の方法

実験は、ガンマ線検出器で覆われた空間に大 強度の中性 K 中間子のビームを入射し、ビーム 軸に対して有限の横方向の運動量を持った π^0 のみがある事象を探す。主なバックグラウンド は、 $K_L \rightarrow \pi^0 \pi^0$ 崩壊でできる4つのガンマ線 のうち2つを見失う場合であり、それを抑える ため、図1に示すような K_L の崩壊領域をガン マ線検出器で覆った実験装置を用いる。

本研究では、主に次の2つを行った。

- (1) 収集した KEK E391a 実験のデータを解 析して、 $K_L \to \pi^0 \nu \overline{\nu}$ 崩壊の分岐比の上限 値を下げるとともに実験方法を検証した。
- (2) J-PARC で新しい E14 KOTO 実験のためにビームラインと実験装置を開発・建設した。

図 1: KEK E391a / J-PARC KOTO 実験装置。 K_L ビームは左側から入り、CsI Calorimeter で 信号となる 2 個のガンマ線を検出する。

4. 研究成果

- (1) KEK E391a 実験のデータ解析: KEK の 12GeV 陽子加速器を用いて行った E391a 実験の全データを解析し、 $K_L \to \pi^0 \nu \overline{\nu}$ 崩 壊の分岐比に対して $BR(K_L \to \pi^0 \nu \overline{\nu}) <$ 2.6×10⁻⁸ (90% 信頼区間)の上限値を与 えた。
- (2) ビームライン: J-PARC で行う実験のためには、外側に漏れる中性子の数を抑えた、鋭い端を持つ大強度の中性 K 中間子ビームが必要である。そのためにコリメータを基本から見直して設計し、製作した。2009年にはビームラインを建設して初めてビームを出し、専用の測定器で中性 K 中間子の生成量を測定した。その結果、K 中間子のレートが実験の提案書で仮定していた値より約3倍高いことがわかった。
- (3) CsI 電磁カロリメータ: 崩壊でできるガン マ線を検出し、そのエネルギーと当たっ た位置を測定するために、崩壊領域の下流 に直径 2m の電磁カロリメータを建設し た。電磁カロリメータは、長さ 50cm (27 放射長)の CsI の結晶を約 2700 本、円柱 状に積み重ねたものである。これらの結 晶は過去に米国 Fermilab 研究所の KTeV 実験で用いられたものを、共同研究者で あるシカゴ大学が譲り受けた。2008 年に 約9ヶ月かけて結晶を順次 Fermilab から 阪大に輸送し、2009 年度に全ての結晶の 光量を測定し、全ての光電子増倍管の性 能試験を行った。

電磁カロリメータは真空中に置かれる

ため、発熱量が通常の1/10の、光電子増 倍管用の高電圧電源を企業と開発した。 またその制御回路を独自に開発した。ま た、高いレートの下でも正確に光電子増 倍管からの電荷量を測るために、全チャ ンネルの波形を記録する装置をシカゴ大 学、アリゾナ州立大学と共同で開発・試 験した。必要な14 bitのダイナミックレ ンジと 1ns 以下の時間分解能を安価に実 現するために、波形をあえて広げて、8ns ごとに記録するようにした。

これらの結晶、光電子増倍管、高電圧 電源、波形記録装置がシステムとして働 くことを確認するために、2010年4月に 東北大の電子ビームを用いて144本の結 晶からなる小型のカロリメータの性能試 験を行った。このデータを解析し、時間 分解能・エネルギー分解能を第1原理か ら再現して理解した。またビームの外側 を漏れてくる K 中間子の $K_L \rightarrow \gamma\gamma$ 崩壊 によるバックグラウンドを電磁シャワー の形状を用いて大きく抑制できることを 示した。

図 2: KOTO 実験の CsI 電磁カロリメータ。

2010 年 6 月からは電磁カロリメータの 建設を始めた。CsI の結晶とそれを支え る円筒の間の隙間、および中心のビーム 穴の周囲には専用のガンマ線検出器を設 置した。建設途中ではあったが 10 月に はビームを出して約 1200 本の信号を読 み出し、カロリメータとして機能してい ることを電子やガンマ線を用いて確認し た。その後建設を続け、2011 年 2 月に図 2 に示すように全ての結晶を積み終えた。

その後東日本大震災に遭ったが、結晶 そのものが割れたり劣化したりはしてい なかった。ただし、結晶全体がそれを支 える円筒からから約 5mm せり出してい たため、次に大きな地震が来た場合にさ らに大きな被害が出ないよう、動きを抑 えるカバーやクッションを取り付けた。

2011 年 8—9 月にカロリメータ全体を 密閉して真空を引き、真空中での動作試 験を行った。

R	econstruc	ted Mas	s with 6	Gamma E	vent	
≅ 45000F				hisMass6GammaRec		
₹ ⁴⁵⁰⁰⁰ E		ł		Entries	927651	
≥ 40000 E				Mean	517.9	
E				RMS	51.15	
35000				Underflow	127	
Ē				Overflow	9.909e+04	
30000				Integral	8.284e+05	
25000		1				
20000						
15000						
10000						
5000						
400	450	500	550	600 e	350 700 Jass[MeV]	

図 3: 2012 年 2 月のビームタイムに観測 した $K_L \rightarrow 3\pi^0$ 崩壊。

2012年2月には J-PARC の加速器が復 旧してビームが出た。そこでカロリメー タ上流に電磁石を置き、運動量を測定し た $K_L \rightarrow \pi^{\pm} e^{\mp} \nu$ 崩壊からの電子と、宇宙 線と $K_L \rightarrow 3\pi^0$ 崩壊(図3)を用いてカロ リメータのエネルギー較正を行った。こ れらの較正結果を比較した結果、本番実 験で用いる方法でも約1.5%の精度で較正 できることを確認した。

(4) 荷電粒子検出器: 電磁カロリメータのす ぐ上流に置く、荷電粒子を検出するプラス チックシンチレータの検出器を開発した。 この測定器で π^- や e^+ が $\pi^-p \to \pi^0 n$ や $e^+e^- \to 2\gamma$ 反応を起こすと、バックグラ ウンドとなる可能性がある。そのため、シ ンチレータの厚さを 3mm まで薄くし、表 面から約 0.5mm 以上通過すれば検出で きるように、波長変換ファイバーをシン チレータに埋め込む。また、ファイバー からの光を MPPC という半導体検出器 で電気信号に変換する。さらに、この検 出器も真空中に置くため、MPPCをペル チェ素子で冷却する。この新しい検出シ ステムを開発・製作した。

- (5) ガンマ線検出器: K_Lの崩壊領域の上流 部に置くために、新たに CsI 結晶を用い たガンマ線検出器を開発した。これは、 ビームの外側に漏れ出した中性子の頻度 を測定する目的も持つ。そのために細分 化した CsI 結晶からの光を波長変換ファ イバーを用いて読み出す方法を開発した。
- (6) データ収集システム: KOTO 実験では全 ての検出器からの信号の波形を記録し、デ ジタル化した情報を用いて、収集する事 象を選択するトリガーを生成する。この システムをミシガン大と共同開発・試験 を行い、2012年2月のビームタイムで正 しく動くことを確認した。
- (7) 今後の計画:東日本大震災のために加速 器が止まったことと地震などによる電磁 カロリメータの検査と復旧作業のために、 実験のスケジュールは約1年遅れた。今 後、2012年の6月のビームタイムで電磁 カロリメータ上流の荷電粒子検出器の試 験を行い、その後、崩壊領域周りの大型ガ ンマ線検出器など残りの検出器を組み上 げる。2012年11月以降のビームで測定 器全体の最終試験を行った後、物理を出 すためのデータ収集に入る。その後、加 速器の強度が上がるとともに、新しい物 理の予測する崩壊分岐比の範囲の探索を 進めていく。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者には 下線)

〔雑誌論文〕(計12件)

特に記さない限り、すべて査読有り。著者の リストはアルファベット順であるため、順番は 省略。

 K. Shiomi, T.K. Komatsubara, H. <u>Nanjo</u>, Y. Tajima, T. Yamanaka *et al.*, "Measurement of K⁰_L flux at the J-PARC Neutral-Kaon Beam Line", Nucl Inst. Meth. A **664**, 264-271 (2012), 査読 有, http://dx.doi.org/doi:10.1016/ j.nima.2011.11.010.

- [2] G. Takahashi, <u>T.K. Komatsubara</u>, <u>H. Nanjo</u>, <u>Y. Tajima</u>, <u>T. Yamanaka et al.</u>,
 "Development of a Neutral Beam Profile Monitor", JJAP **50**, 036701 (2011), 査読 有, http://dx.doi.org/doi:10.1143/JJAP.50.036701.
- [3] D. Bryman, W.J. Marciano, R.T. Tschirhart, and T. Yamanaka, "Rare Kaon and Pion Decays: Incisive Probes for New Physics Bound to the Standard Model", Ann. Rev. Nucl. Part. Sci. 61, 331 (2011), 査読 有, http://dx.doi.org/doi:10.1146/ annurev-nucl-102010-130431.
- [4] R. Ogata, T.K. Komatsubara, T. Mat sumura, H. Nanjo, Y. Tajima, T. Ya manaka et al. (E391a Collaboration), "Study of the $K_L^0 \rightarrow \pi^0 \pi^0 \nu \overline{\nu}$ decay", Phys. Rev. D 84, 052009 (2011), 査読 有, http://dx.doi.org/doi:10.1103/ PhysRevD.84.052009.
- [5] J.K. Ahn, T.K. Komatsubara, H. Na <u>njo</u>, <u>S. Suzuki</u>, <u>Y. Tajima</u>, <u>T. Yam</u> <u>anaka</u>, H. Morii *et al.*, "Experimental Study of the Decay $K_L \rightarrow \pi^0 \nu \overline{\nu}$ ", Phys. Rev. D **81**, 072004 (2010), 査読 有, http://dx.doi.org/doi:10.1103/ PhysRevD.81.072004.
- [6] E. Blucher, B. Winstein and T. Yamana ka, "Testing the CKM Model with Kaon Experiments", Prog. Theo. Phys. 122, 81 (2009), 査読有, http://dx.doi.org/ doi:10.1143/PTP.122.81.
- [7] Y.C. Tung, T.K. Komatsubara, H. Nanj o, S. Suzuki, Y. Tajima, T. Yamanaka, et al., "Search for a Light Pseudoscalar Particle in the Decay $K_L^0 \to \pi^0 \pi^0 X$ ", Phys. Rev. Lett. **102**, 051802 (2009), 査読有, http://dx.doi.org/doi:10. 1103/PhysRevLett.102.051802.
- [8] G. Buchalla, T.K.Komatsubara, F. Muheim, L. Silvestrini *et al.*, "B, D

and K decays", Eur. Phys. J. C 57, 309-492 (2008), 査読有, http: //dx.doi.org/doi:10.1140/epjc/ s10052-008-0716-1.

- [9] J.K. Ahn, T. Sumida, <u>T.K. Komats</u> <u>ubara</u>, <u>H. Nanjo</u>, <u>S. Suzuki</u>, <u>Y. Ta</u> <u>jima</u>, <u>T. Yamanaka</u>, *et al.*, "Search for the Decay $K_L \rightarrow \pi^0 \nu \overline{\nu}$ ", Phys. Rev. Lett. **100**, 201802 (2008), 査読 有, http://dx.doi.org/doi:10.1103/ PhysRevLett.100.201802.
- [10] Y. Tajima, T.K. Komatsubara, T. Yam anaka, "Barrel Photon Detector of the KEK $K_L \rightarrow \pi^0 \nu \overline{\nu}$ Experiment", Nucl. Inst. Meth. A **592**, 261-272 (2008), 査読 有, http://dx.doi.org/doi:10.1016/ j.nima.2008.04.080.
- [11] J. Nix, T.K. Komatsubara, S. Suzu ki, Y. Tajima, T. Yamanaka, et al., "First Search for $K_L \to \pi^0 \pi^0 \nu \overline{\nu}$ ", Phys. Rev. D **76**, 011101(R) (2007), 査読 有, http://dx.doi.org/doi:10.1103/ PhysRevD.76.011101.
- [12] J.K. Ahn, T. Inagaki, <u>T.K. Komatsu</u> bara, G.Y. Lim, N. Sasao, H. Watanabe, M. Yamaga, <u>T. Yamanaka</u>, *et al.*, "New Limit on the $K_L \rightarrow \pi^0 \nu \overline{\nu}$ Decay Rate", Phys. Rev. D **74**, 051105(R) (2006), 査読有, http://dx.doi.org/ doi:10.1103/PhysRevD.74.051105.

〔学会発表〕(計154件)

- Takeshi Komatsubara, "Experiments with K-Meson Decays", KEK Flavor Factory Workshop (KEK-FF2012), Mar 08-10, 2012, KEK, Japan.
- [2] Taku Yamanaka, "Kaon Experiments in Japan: J-PARC KOTO", Fundamental Physics at the Intensity Frontier, Nov 30-Dec 02, 2011, Rockville MD, USA.
- [3] Tadashi Nomura, "J-PARC Flavor Program", Flavor Physics and CP Violation 2011, May 23-27, 2011, Kibbuts Maale Hachamisha, Israel.

- [4] Hiroaki Watanabe, "The new $K_L \rightarrow \frac{1}{\pi^0 \nu \bar{\nu} \text{ experiment (KOTO) at J-PARC", ICHEP2010, Jul 22-28, 2010, Paris, France.$
- [5] Gei-Youb Lim, "Kaon Experiments at J-PARC", BEACH 2010 - IX International Conference on Hyperons, Charm and Beauty Hadrons, Jun 21-26, 2010, Perugia, Italy.
- [6] 森井秀樹, "KEK-PS E391a 実験におけ る $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊モード探索の最終結 果", 日本物理学会第 65 回年次大会, Mar 20-23, 2010, 岡山大学.
- [7] <u>Taku Yamanaka</u>, "Status of the J-<u>PARC E14 Experiment</u> for the $K_L \rightarrow \pi^0 \nu \overline{\nu}$ ", WIN'09 - Weak Interactions and Neutrinos, Sep 14-19, 2009, Perugia, Italy.
- [8] Takahiko Masuda, "Lower power PMT base for KOTO experiment using Cockcroft-Walton circuit", PIC2009 -XXXIX Physics In Collision, Aug 30-Sep 02, 2009, Kobe, Japan.
- [9] Takeshi Komatsubara, "Kaons Recent Results and Future Plans", Lepton Photon 2009 - XXIV International Symposium on Lepton Photon Interactions at High Energies, Aug 17-22, 2009, Hamburg, Germany.
- [10] <u>Hajime Nanjo</u>, "J-PARC E14 KOTO Experiment for $K_L \rightarrow \pi^0 \nu \overline{\nu}$ ", KAON 2009, Jun 09-12, 2009, Tsukuba, Japan.
- [11] <u>Tadashi Nomura</u>, "Reach of Future <u>Kaon Efforts</u>", FPCP08 - Flavor Physics and CP Violation, May 05-09, 2008, Taipei, Taiwan.
- [12] 隅田土詞, "KEK-PS E391a 実験における $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 崩壊の探索", 日本物理学会 第 63 回年次大会, Mar 22-26, 2008, 近畿 大学.

- [13] <u>Taku Yamanaka</u>, "J-PARC", Workshop on Physics with a High Intensity Proton Source, Nov 16-17, 2007, Fermilab, USA.
- [14] Taku Yamanaka, "Flavor Physics at J-Parc", (Plenary talk)", CKM2006 -4th International Workshop on CKM Unitarity Triangle, Dec 12-16, 2006, Nagoya, Japan.
- 〔図書〕(計1件)
 - K 中間子、山中 卓,「素粒子物理学ハンドブック」、山田作衛、相原博昭、岡田安弘、坂井典祐、西川公一郎編、朝倉書店 (2010)、ISBN978-4-254-131000-0, pp. 343-354.
- 〔その他〕

```
ホームページ:http://koto.kek.jp/
```

- 6. 研究組織
- (1) 研究代表者
 山中 卓 (Yamanaka, Taku)
 大阪大学・大学院理学研究科・教授
 研究者番号: 20243157
- (2) 研究分担者
 - 小 松 原 健 (KOMATSUBARA, Takeshi) 高エネルギー加速器研究機構・素粒子原 子核研究所・教授 研究者番号:30242168

南篠 創 (NANJO, Hajime) 京都大学・大学院理学研究科・助教 研究者番号:40419445 (H20 年度のみ連携研究者、その他の年度 は研究分担者)

田島 靖久 (TAJIMA, Yasuhisa) 山形大学・学術情報基盤センター ・准教 授 研究者番号:50311577 (H20 年度から)

鈴木 史郎 (SUZUKI, Shiro) 佐賀大学・理工学部 ・教授 研究者番号:50089851

松村 徹 (MATSUMURA, Toru) 防衛大学校・応用科学群 ・助教 研究者番号:00545957 (H22年度から) 山鹿 光裕 (YAMAGA, Mitsuhiro) 大阪大学・大学院理学研究科・特任助教 研究者番号:50379301 (H19年度まで) 笹尾 登 (SASAO, Noboru) 京都大学・大学院理学研究科・教授 研究者番号:10115850 (H20年度まで) 吉田 浩司 (YOSHIDA, Kouji) 山形大学・学術基盤センター・准教授 研究者番号:80241727 (H19年度のみ) (3) 連携研究者 稲垣 隆雄 (INAGAKI, Takao) 高エネルギー加速器研究機構・素粒子原 子核研究所・教授 研究者番号:60044757 (H19年度まで研究分担者、H20年度連携 研究者) 林 ゲヨブ (LIM, GeiYoub) 高エネルギー加速器研究機構・素粒子原 子核研究所・准教授 研究者番号:90332113 (H19年度まで研究分担者、H20年度以降 連携研究者) 渡辺 丈晃 (WATANABE, Hiroaki) 高エネルギー加速器研究機構・素粒子原 子核研究所・助教 研究者番号:00415043 (H19年度まで研究分担者、H20年度以降 連携研究者) 野村 正 (NOMURA, Tadashi) 高エネルギー加速器研究機構・素粒子原 子核研究所・准教授 研究者番号:10283582 (H21 年度から) 外川 学 (TOGAWA, Manabu) 大阪大学・大学院理学研究科・助教 研究者番号:50455359 (H22年度から)