科学研究費補助金研究成果報告書

平成24年5月14日現在

機関番号：17102
研究種目：特定領域研究
研究期間：2007～2011
課題番号：19055006
研究課題名（和文）：核融合炉プランケット材中のトリチウム移動解明と新規回収プロセス開発の研究
研究課題名（英文）：Study on clarification of tritium transfer in fusion reactor blankets and on development of new processes to recover tritium

研究成果の概要（和文）：
核融合炉固体増殖材Li₂TiO₃やLi,SiO₃、液体増殖材Li, Li-Pb, Flibeに関して、材料トリチウム増殖率（TBR）やトリチウム保持量、拡散係数等の測定値に基づき、プランケットシステムとしてトリチウム自給に必要な実質 TBR1を達成し、トリチウム通透率を安全基準以下に抑え、かつ高いトリチウム回収率を達成する基本システム構築をおこなう。具体的にはミクロスケールのプランケット流体の対流下トリチウム拡散挙動を明らかにし、各種プランケット材について、高回収率を達成するシステムの基礎研究をおこない、核融合炉実現に寄与する。

研究成果の概要（英文）：
Based on material's tritium breeding ratio (TBR) and tritium retentions that have been already determined for solid breeding materials of Li₂TiO₃ and Li,SiO₃ and liquid breeding materials of Li, Li-Pb eutectic alloy and Flibe molten salt, blanket systems are experimentally investigated to achieve tritium self-sufficient condition and to realize safety to lower level than allowable tritium leak rate. Micro-scale He convection in solid blankets and new tritium recovery systems are experimentally proved for each of the solid and liquid blankets. The present study is heavily contributed to realize fusion reactor systems.

交付決定額（金額単位：円）

<table>
<thead>
<tr>
<th></th>
<th>直接経費</th>
<th>間接経費</th>
<th>合 計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007年度</td>
<td>15,300,000</td>
<td>0</td>
<td>15,300,000</td>
</tr>
<tr>
<td>2008年度</td>
<td>20,400,000</td>
<td>0</td>
<td>20,400,000</td>
</tr>
<tr>
<td>2009年度</td>
<td>23,100,000</td>
<td>0</td>
<td>23,100,000</td>
</tr>
<tr>
<td>2010年度</td>
<td>26,960,000</td>
<td>0</td>
<td>26,960,000</td>
</tr>
<tr>
<td>2011年度</td>
<td>8,000,000</td>
<td>0</td>
<td>8,000,000</td>
</tr>
<tr>
<td>総計</td>
<td>93,760,000</td>
<td>0</td>
<td>93,760,000</td>
</tr>
</tbody>
</table>

研究分野：工学
科研費の分科・細目：総合工学・核融合学
キーワード：核融合、トリチウム、安全性、プランケット、増殖率、透過漏洩

1. 研究開始当初の背景
核融合炉の固体セラミック材と液体 Li, Li₁₅Pb₁₄Si₂, Flibe (Li₂BeF₄) の各プランケット材中の生成トリチウムを回収し、核融合炉全体のトリチウム増殖比を1以上にするとともに、配管全体からのトリチウムの透過漏洩を作業環境安全基準以下に抑えることが核融合炉の定常運転と安全性のために必要である。
トリチウム自給条件を満足させるにはトリチウム増殖比を 1.05 以上にすることが要求されており、その達成のため、核炉プラントのトリチウム原子回収率達成と透過線出を最低限に抑え核燃料炉達成の基礎研究をおこなうこととなった。

２．研究の目的
核燃料炉のトリチウム自給条件と安全条件を同時に満足させるため、またそのことを実験的に証明するため、固体ブランケット材料である Li,TiO₂や Li₃SiO₄のセラミックス、液体の Li, Li₂O, Pb₂O₃共融合金、Flibe溶液塩からトリチウム回収法の確立と必要な透過率以下にするシステムを構築することが本計画研究の目的である。

３．研究の方法
固体ブランケットでは Li₃SiO₄と Li₃TiO₂が代表的なトリチウム増殖材である。過去に各種材料の TBR やトリチウム保持量が中性子照射実験等によって求められてきた。問題はブランケットシステムとして構築するときに回収まで含めて内部で TBR が設計通り機能するか、またトリチウム透過率を抑えるため、必要な回収率が維持できるように新規回収システムを構築できることである。研究手法は目標とする増殖材料により異なる。固体増殖材では、TRR をミクロスケールで予測するため、ブランケット内部も観察化実験をおこなない、予測精度を高め、回収を効率化する、またヘスウィープガスからトリチウム回収のため、プロトトン導電性セラミックス電気分離システムのトリチウム回収システムの実現可能性を証明する。液体増殖材では、Y の表面酸化膜を除去した上で、Li 中の極低レベルトリチウムを Y で回収するシステムを実現し、Li₂Pb では Cd の同位体効果測定に比べ、T 値を測定しつつ、He-LiPb 向流回収システムの基礎試験をおこない、透過率予測をおこなう。Flibeについても He による T 回収実験を行い、向流パージーシステムの実現可能性について実験的に明らかにする。さらに液体ブランケット全体について、トリチウム透過予測実験をおこなう。目標回収率達成と透過率低減について B2 班と緊密に打ち合わせをおこなう。毎年 B2 班および検査会を設けて、核燃料炉システム構築をおこなった。

４．研究成果
JAEA 総括・関係、Li₃TiO₂、固体ブランケット内部のトリチウム移行を含むパージガス特性評価で、高精度のミクロ TBR 予測を実現するために、Li₃TiO₂充填層模擬試験体の、流動可視化手法を新規に開発した。図 1 はその一例であり、固体ブランケット材を水と同じ屈折率を持つメキシンフロンを用いて製作し、
供給した時のトリチウム分離係数であり、Heから回収するとともに、T 分離も同時に達成することことができ、約 144段直列に繋ぐことにより、99.9%のトリチウムを分離回収する性能が予測された。

九州大学の片山・西川らは、Li,SiO2 や Li,TiO2 のセラミック材からのトリチウム放出実験を行い、放出率の数値計算による予測に成功した。計算モデルには、セラミック微粒子子固体内のトリチウム拡散、微粒子間隙の拡散、表面抵抗、水素−水素同位体間の拡散反応、水素−水蒸気同位体間の拡散反応、粒子ベラメート間隙空気の拡散の寄与が含まれ、1993年当時で得たトリチウム放出結果だけではなく、過去に来客の中性子照射実験で得られたトリチウム放出実験結果もよく定量的に表せることが確認され、またセラミックプレーン配管からのトリチウム絶縁およびヘリウムバージョンからのトリチウム通過率の予測実験を行い、酸化膜形成のトリチウム絶縁効果を明確にすることができた。

九州大学グループと NIFS 同様には、FFHR ヘリカル型核融合炉のブランケット構造を Flibe に考慮、そのトリチウム回収実験をおこなった。図 3 は、Flibe の内面管径に Ho ガスを接触させ、その内径を放出したトリチウム濃度と Flibe 内の温度、表面同位体交換、再結合等の効果を考慮した数値計算結果の比較である。ほぼ全域で著しいトリチウム放出率が予測できる。従って Flibe ブランケットでは、T の T1−への還元処理、それに伴うトリチウム透過率の低減をおこなうことにより、99.9%以上の回収率を達成することができる。必要な装置は、Ho−Flibe 向流抽出装置であり、この装置設計に必要な解析式を求め、数値計算して成果を報告している。この他、Flibe 溶融塩中水素の存在状態を調べるため、過去報告されている不活性ガス溶解度と分子種の効果を表面張力の効果を調べ、溶融塩中に分子形で溶解するガスの基礎化学分野にも重要な寄与をなした。

Li−Pb 共融合金も ITER−TBM 等で注目されている有力な増殖材料であり、通過法や定容法によりブランケットトリチウム移行予測に必要な T 溶解度、拡散係数、透過係数を求め、2D 同位体交換および3D 同位体交換を実験的に調べ、多くの研究成果として報告されている。その他、Li−Pb の組成の違いに基づき、Li の活量の決定、Li−Pb 中の Li 原子の存在状態を第一原理に基づく数値計算と先に求めた拡散係数や溶解度のデータとの比較に基づき明るかにし、溶融合金共存の基礎研究にも重要な寄与をなした。

Li は最も TBG が大きく伝うトクリウム平衡圧がきわめて小さいので、トリチウム透過が

図 3 Flibe からのトリチウム放出実験と解析結果の比較(九大深水+NIFS 様)

最も小さいブランケットが構成できる材料である。しかし問題は、溶解度が極めて高いので、トリチウム回収が難しく、インベントリが非常に高くなる可能性がある。研究者らは Y の表面を HF で処理した材料を使い、Li 中に溶解した T を 1ppm 以下にすることに成功した。さらに Li 流動状態における溶解水素同位体の Y 粒子による回収実験に成功し、図 4 の図のように、回収率を物質移動係数により整理することにより水素濃度と流動速度に依存しない係数実験的に求めることができた。この結果を利用して Li からのトリチウム回収装置を設計し、実際にも IFMIF−EVEDA の装置設計に反映させることができた。

核融合炉の実現には実質的な量以下の低トリチウムインベントリ実現と環境への通過漏洩を実現に要されるレベル以下に抑える必要がある。本 B1 班では、各種ブランケット材からの新規トリチウム回収法の実現と、ブランケット内の流動と拡散移行、反応の効果を定量的に表すことでより正確な評価をお
こなうことができた。B2班では、プランケッ
トを材料科学の立場から研究し、特に液体プ
ランケットではプラント材構造材の相互作
用を測定し、透過率測定のための基盤の開
発研究。固体プランケット Li,Ti,Bの組成を
LiリッチにすることでTBR増加が見られる
相互作用抑制を図っている。定期的に研究会
を開催し情報交換を図っている。B3班で数が
ないが、研究グループの発足に寄与すると
考えられる。

5．主な発表論文等
（研究者名、研究分担者及び連携研究者に
は下記）

【雑誌論文】（計8件）
①S. Fukada, Y. Edao, K. Sato, T. Takeishi,
K. Katayama, K. Kobayashi, T. Hayashi,
T. Yamanishi, Y. Hatano, A. Taguchi, S.
Akamaru, “Transfer of tritium in concrete
coated with hydrophobic paints”, Fusion
②S. Fukada, M. Ueda, T. Izumi, G. Wu, K.
Katayama, “Effects of preadsorbed H2O and
CH4 on H2 and He adsorption of activated
carbon at cryogenic temperature”, Fusion
Science and Technology, 61 (2012) 282–289
(査読有り).
permeation, diffusion and dissolution in
Li-Pb”, Journal of Nuclear Materials, 417
(2011) 723–726 (査読有り).
④S. Fukada, Y. Edao, “Unresolved issues on tritium mass transfer in Li-Pb liquid
blankets”, Journal of Nuclear Materials, 417
⑤T. Hanada, M. Nishikawa, T. Kanazawa, H.
Yamasaki, N. Yamashita, S. Fukada,
“Effect of surface water on tritium release
behavior from Li,Ti,B”, Journal of Nuclear
⑥M. Terashita, S. Fukada, “Experimental
clarification of the desorption of D2, H2
and He mixtures from cryosorption pump”,
Journal of Nuclear Materials, 417 (2011)
1179–1182 (査読有り).
⑦M. Ida, S. Fukada, T. Furukawa, Y.
Hirakawa, H. Horoike, T. Kanemura, H. Kondo,
M. Miyashita, H. Nakamura, H. Sugiura, A.
Suzuki, T. Terai, T. Tsuji, H. Ushimaru, K.
Watamine, J. Yagi, “Target system of
IPMIF/EVEDA in Japanese activities”,
Journal of Nuclear Materials, 417 (2011)
1294–1298 (査読有り).
⑧T. Norimatsu, H. Saika, H. Homma, M.
Nakai, S. Fukada, “Leakage control of
tritium through heat cycles of
conceptual-design, laser-fusion reactor
Koyo-f”, Fusion Science and Technology, 60
⑨Y. Kawamura, W. Shu, M. Matsuyama, T.
Yamanishi, “Stability of NaI(Tl) detector
for tritium monitor of BIXS use to hot
environment”, Fusion Science and
⑩K. Ichiki, T. Kagawa, K. Ishihashi, N.
Ikeda, S. Fukada, G. Wakaibayashi, Y.
Kawabata, Tritium monitoring using
magnetically-levitated-electrode
ionization chambers, Fusion Science and
⑪K. Katayama, S. Fukada, M. Nishikawa,
“Demonstration of tritium extraction from
tritiated methane in helium by utilizing
plasma decomposition”, Fusion Science and
⑫Y. Edao, H. Okitsu, H. Noguchi and S.
Fukada, “Permeation of two-component
hydrogen isotopes in lithium-lead eutectic
alloy”, Fusion Science and Technology, 60
⑬T. Kanazawa, M. Nishikawa, H. Yamasaki,
K. Katayama, H. Kashimura, T. Hanada, S.
Fukada, “Study on tritium release
behavior from Li,Ti,B”, Fusion Science and
⑭H. Kondo, T. Furukawa, Y. Hirakawa, K
Nakamura, M. Ida, K. Katanabe, T. Kanemura,
E. Wakai, H. Horoike, Y. Yamaoka, H.
Sugiura, T. Terai, A. Suzuki, J. Yagi, S.
Fukada, H. Nakamura, I. Matushita, F.
Groschel, K. Fujishiro, P. Garin, H.
Kimura, “IPMIF/EVEDA lithium test loop:
design and fabrication technology of
target assembly as a key component”,
⑮K. Katayama, S. Kasahara, S. Ishikawa, S.
Fukada, M. Nishikawa, “Hydrogen
incorporation in tungsten deposits growing by
deuterium plasma sputtering”, Fusion
Engineering and Design, 86 (2011)
1702–1705 (査読有り).
⑯Y. Kawamura, T. Yamanishi, “Tritium
recovery from blanket sweep gas via ceramic
proton conductor membrane”, Fusion
Engineering and Design, 86 (2011)
2160-2163 (査読有り)。
⑦S. Fukada, Y. Edao, A. Sagara, “Effects of simultaneous transfer of heat and tritium through Li-Pb or Flibe blanket”, Journal of Nuclear Science and Technology, 47 (2010) 1314-1319 (査読有り)。
⑧以降、報告論文のため省略、他の成果はホームページに掲載されている。

〔学会発表〕（計 19 件）
①河村經範, 山崎茂, “カルシウム交換型モルデナイトの水中同位体吸着速度”, 日本原子力学会2012年会の年会, 3月19日-20日, 福井
⑨柏村英明, 片山一成, 山崎茂, 深田智, 西川正史, 松本将平, ブランケットからのトリチウム回収(3)固体増殖材の水分生成反応がトリチウム放出に与える影響, 日本原子力学会2011年秋の大会, (2011) 9月19-22日, 北九州。
6. 研究組織

(1) 研究代表者

深田 智 (FUKADA SATOSHI)
九州大学・大学院総合理工学研究院・教授
研究者番号: 50117230

(2) 研究分担者

橋枝 伸男 (ENOEDA MIKIO)