科学研究費助成事業

研究成果報告書

研究成果の概要(和文):我々はこれまで、一般的な超伝導線材作製の方法であるPIT(Powder-in-tube)法(超伝 導体の原料を金属管に充填し加工後、熱処理を行うことで超伝導線材を得る方法)に独自の工夫を施した鉄拡散 PIT法を開発した。鉄拡散PIT法を用いて作製したFeSe超伝導線材は多結晶体より約2 K高い超伝導転移温度(電気 抵抗がゼロになる温度)Tc ~10 Kを示した。

本研究では、鉄拡散PIT法で作製したFeSe線材の結晶粒間結合を改善させるために、熱処理時間が超伝導特性 に及ぼす影響を調べた。その結果、鉄拡散PIT法で作製したいずれのFeSe線材においても熱処理時間に関係な く、高いTcが得られた。

研究成果の概要(英文):We have reported that the FeSe superconducting wires fabricated by the Fe-diffusion power-in-tube (PIT) process showed the enhanced superconducting transition temperature Tc ~10.5 K, which is ~2 K higher than that found in bulk materials. In this study, we investigated the influence of the length of the heat-treatment time in the Fe-diffusion PIT process on Tc. The XRD pattern of the reacted layer indicates that the FeSe phase inside the Fe sheath is expectedly synthesized by the Fe-diffusion PIT process. The elemental mapping analysis show that the Fe distribution is homogeneous in the superconducting phase. Also all the wires heat-treated at 800 degree Celsius for 2, 5, 10 hours exhibit enhanced Tc >10 K. These results suggest that successful fabrication of FeSe wires by the Fe-diffusion PIT process is not depend on the length of the heat-treatment time.

研究分野: 超伝導

キーワード: 超伝導線材 超伝導転移温度 結晶粒界 化学組成

1.研究開始当初の背景

超伝導技術は、電気抵抗がゼロとなる特徴 を生かした超伝導ケーブルや変圧器の効率 化といった電力輸送ロスの大幅削減技術が 二酸化炭素排出削減のためのキーテクノロ ジーとして期待されている。中でも、2008 年 の鉄と砒素を含む化合物 LaFeAsO_{1-x}F_xにおけ る超伝導の発見を契機に、鉄系高温超伝導物 質の研究が、世界的規模で進展している。鉄 系超伝導体は高い磁場中特性を示し、銅酸化 物系超伝導体にはない3次元等方性という超 伝導の性質を持っているため、次世代高温超 伝導材料として高い潜在能力を持つ物質で ある。

我々はこれまで、鉄系超伝導体の実用化を 目指して、FeSe に代表される PbO(11)型鉄系 超伝導体に着目し、線材開発を行ってきた。 その結果、一般的な線材作製の方法である PIT(Powder-in-tube)法(超伝導体の原料を金属 管に充填し加工後、熱処理を行うことで超伝 導線材を得る方法)に独自の工夫を施した鉄 拡散 PIT 法の開発に成功した。鉄拡散 PIT 法 を用いて作製した FeSe 多芯線は電気抵抗ゼ ロで流すことのできる最大の電流値である 臨界電流密度 J_cが 1027 A/cm²(4.2 K)を示した。 更に非常に興味深いことに鉄拡散 PIT 法で作 製した FeSe 線材は多結晶体より約2 K 高い 超伝導転移温度 T_e~10 K を示した。しかしな がら、他の鉄系超伝導線材と比較すると約2 桁」。が低い。コヒーレントな超伝導電流を流 し、更にJ。を向上させるためには「弱結合」 を改善し、「組成と組織の均一性」を高める 必要があり、そのためには超伝導コアの「純 度」と「密度」を上げることが非常に効果的 である。

2.研究の目的

本研究では、低炭素エネルギー社会の構築 を目指し、シース材料を超伝導物質の原料に 利用した次世代鉄系超伝導線材技術の確立 を目的に、鉄拡散 PIT 法における熱処理時間 が超伝導特性に及ぼす影響を調べた。

3.研究の方法

鉄拡散 PIT 法の熱処理条件と圧延方法を変 化させて FeSe 丸線材(単芯線と7芯線)と FeSe テープ線材(単芯線)を作製した。Se 粒を砕き 粉末状にした後、金属管に詰め込み、丸棒で 押して充填密度を上げた。粉末を充填した鉄 管を、まず溝ロール圧延で約 2.5 mm 角のロ ッドに加工し、ダイス線引きにより 1.1 mm 径に丸線加工した。その後、下記の3つのプ ロセスで FeSe 線材を作製した。

<プロセス >

平ロールで厚さ 0.3 mm まで圧延し4 cm に切 断し、線材の両端をアーク溶接で閉じた後、 アルゴン大気圧中で石英管に封入し、800℃ で熱処理(2時間、10時間)を行い、急冷し た。 <プロセス > 得られた丸線材を 4-5 cm に切断し,線材の両 端をアーク溶接で閉じた。その後、アルゴン 大気圧中で石英管に封入し、800℃で熱処理 (2時間、5時間、10時間)を行い、急冷し た。

<プロセス >

4-5 cm に切断した丸線材 7 本を新しい鉄シー ス内にいれ、溝ロール圧延で約 2.5 mm 角の ロッドに加工し、ダイス線引きにより、より 1.6 mm 径に丸線加工した。その後、4-5 cm に 切断し、線材の両端をアーク溶接で閉じた後、 アルゴン大気圧中で石英管に封入し、800°C で熱処理(10 時間)を行い、急冷した。

作製した線材の結晶構造評価は X 線回折 (XRD)法、微細構造観察には走査型電子顕微 鏡 SEM (Scanning electron microscope)、組成分 析 は EDX (Energy Dispersive X-ray Spectroscopy)による点分析を行った。また、 超伝導特性は、四端子法により電気抵抗率の 温度依存性から測定した。

4.研究成果

(1) 微細構造観察

図1に800°Cで10時間熱処理を施した熱 処理を施したFeSe 丸線材の断面SEM (Scanning electron microscope)像と EDX(Energy Dispersive X-ray Spectroscopy)に よる元素マッピングの結果を示す。図より、 鉄管内に結晶が密に詰まっており、さらに

図 1.800°C で 10 時間熱処理を施した熱処理を 施した FeSe 丸線材の断面 SEM 像と EDX によ る元素マッピング.

図2. FeSe丸線材(800°C, 10時間の熱処理)の断面 SEM 像.

表1. 図2における001-005点のSEM-EDXの結果.

	Se	Fe
001	0.15	99.85
002	53.26	46.74
003	53.45	46.55
004	52.76	47.24
005	0.00	100.00
		(-+0/)

(at%)

鉄管と超伝導相の界面に不純物が形成されていない。また、図2に各点に対応する部分を EDX により点分析を行った。表1 にその結果を示す。これらの結果から、コア部の組成はほぼ FeSe になっていることがわかった。

(2) x 線回折測定

次に、熱処理によって形成された物質を特定するために XRD 測定を行った。図3に 800°C熱処理を施した(a) FeSe単芯丸線材と (b) FeSe単芯テープ線材のXRDパターンを示す。いずれの FeSe 線材の XRD パターンも FeSe 多結晶体のパターンと一致していることが確認できた。これらの結果からいずれの熱処理 条件においても線材内部には FeSe が生成され ていることがわかった。これらの結果は SEM-EDX から得られた結果とも一致している。

図 3. (a)単芯 FeSe 丸線材と(b)単芯 FeSe テープ 線材の XRD 測定結果.

(3) 臨界温度(超伝導転移温度 T_c)

図4に800°Cで熱処理時間を変化させた(a) FeSe単芯丸線材と(b) FeSe単芯テープ線材の 電気抵抗率の温度依存性を示す。いずれの線 材においても T_c^{zero} ~10Kを示しており、FeSe の多結晶体の値(T_c^{zero} = 8K)よりも約2K高い。 このことから、熱処理時間に関係なく、多結 晶体より高い T_c が得られることがわかった。 これらの結果から、鉄拡散 PIT 法で作製し たいずれの FeSe 線材においても熱処理時間 に関係なく、コア部に FeSe が生成され、多 結晶体より高いT。を示すことがわかった。

図 4. (a)単芯 FeSe 丸線材と(c)単芯 FeSe テープ 線材の電気抵抗率の温度依存性.

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

[雑誌論文](計 0件)

[学会発表](計 9件)

(1) <u>尾崎 壽紀</u>, Qiang Li, "低エネルギープロ トン照射した FeSe_{0.5}Te_{0.5}薄膜の磁束ピンニン グ特性,"第 64 回応用物理学会春季学術講演 会, 16p-318-12, 2017 年 3 月 14–17 日, パシフ ィコ横浜 (神奈川県横浜市).

 (2) <u>尾崎 壽紀</u>, Qiang Li, "プロトン照射した 鉄カルコゲナイド薄膜の臨界電流特性,"第4
 回材料研究会/九州・西日本支部合同研究会,
 2017年1月27日(金), 九州工業大学飯塚キャンパス (福岡県飯塚市).

(3) <u>T. Ozaki</u>, Q. Li, "Effect of ion irradiation on FeSe_{0.5}Te_{0.5} superconducting films," International Workshop on Superconductivity and Related Functional Materials, Dec. 20-22, 2016, National Institute for Materials Science (Ibaraki, Tsukuba).
(4) <u>尾崎 壽紀</u>, Qiang Li, "鉄カルコゲナイド 超伝導薄膜へのプロトン照射効果," 第 59 回 化合物新磁性材料専門研究会,東京大学,2016年12月5日(月)(東京都文京区).

(5) 溝畑 尚幸, 藤原 明比古, <u>尾崎 壽紀</u>,

"One-step 合成法により育成した K_xFe_{2-y}Se₂ 単結晶の相制御と超伝導特性," 低温工学・ 超電導学会関西支部第 15 回低温工学・超伝 導若手合同講演会, 2016 年 11 月 25 日, 大阪 府立大学 I-site なんば (大阪府大阪市).

(6) <u>尾崎 壽紀</u> "鉄カルコゲナイド薄膜の超 伝導特性,"低温工学・超電導学会関西支部第 3 回関西支部講演会 2016 年 10 月 21 日 (金),株式会社ダイオー本社 (大阪府枚方 市).

(7) 溝畑 尚幸, <u>尾崎 壽紀</u>, "鉄系超伝導体 K_xFe_{2-y}Se₂ における Fe 欠損が超伝導転移温度 に与える影響," 応用物理学会関西支部平成 28 年度第 2 回講演会, 2016 年 10 月 7 日, 関西 学院大学西宮上ヶ原キャンパス (兵庫県西宮 市.)

 (8) <u>尾崎 壽紀</u>, Qiang Li, "イオン照射した FeSe_{0.5}Te_{0.5} 膜の超伝導特性,"第 77 回応用物 理学会秋季学術講演会, 14p-D63-6, 2016 年 9 月 13–16 日, 朱鷺メッセ (新潟県新潟市).

(9) <u>尾崎 壽紀</u>, "K_xFe_{2-y}Se₂ の合成と超伝導特 性,"九州・西日本支部研究会 / 第 3 回材料研 究会 合同研究会, 2015 年 10 月 8–9 日, KKR 山口あさくら (山口県山口市).

〔図書〕(計 0件)

〔産業財産権〕

出願状況(計 0件)

取得状況(計 0件)

〔その他〕

ホームページ等 http://www.kg-nanotech.jp/ozaki/

6.研究組織

(1)研究代表者
 尾崎 壽紀 (OZAKI, Toshinori)
 関西学院大学・理工学部・専任講師
 研究者番号: 20756663

(2)研究分担者

なし

(3)連携研究者 なし

(4)研究協力者 高野 義彦 (TAKANO, Yoshihiko)