科学研究費助成事業

研究成果報告書

E

元 年 今和 6 月 1 9 日現在

機関番号: 17102	
研究種目: 基盤研究(B)(一般)	
研究期間: 2016~2018	
課題番号: 16H04192	
研究課題名(和文)有機無機ペロブスカイトを半導体層とした電界効果トランジスタ	
研究課題夕(茁文)Field offect transisters with organic increasis perovskite somiconductors	1
M元标题日(英文)Therd-effect transistors with organic-morganic perovskite semiconductors	1
	1
研究代表者	
松島 敏則(Matsushima, Toshinori)	1
九州大字・カーホンニュートラル・エネルキー国際研究所・准教授	
	1
	1
研究者番号:40521985	
交付決定額(研究期間全体):(直接経費) 13,300,000円	

研究成果の概要(和文):ペロブスカイトトランジスタの構造を最適化することによりホール移動度を12cm2/Vs まで向上させた。また、ペロブスカイトトランジスタをn型駆動させることにも成功した(1.5cm2/Vsの電子移動 度)。接触抵抗の影響を低減させることによってホール移動度を26cm2/Vsに、電子移動度を4.6cm2/Vsに向上させ ることに成功した。大気中におけるペロブスカイト膜の劣化機構を解析することから、大気の定なペロブスカイ トトランジスタを実現した。ペロブスカイト単結晶を用いたトランジスタにおいて50cm2/Vsの極めて高いホール 移動度及び約36cm2/Vsの電子移動度が得られた。

研究成果の学術的意義や社会的意義 ペロブスカイトトランジスタはスピンコート法などの簡単なプロセスで作製できる。無機骨格を介してキャリア が流れるために高速動作も期待される。しかし、ペロブスカイトの基礎的な動作原理、デバイス特性を低下させ る要因、劣化機構などについては分かっていないことが多かった。これらに関する学理を解明し、その結果をフ ィードバックすることから極めて高性能なペロブスカイトトランジスタを作製できるようになった。本研究成果 を用いれば、アンビポーラトランジスタや発光トランジスタなどの次世代デバイスの研究へと展開できる。ま た、センサー、駆動回路、発光デバイスなどへの応用が期待され、関連産業分野に大きなインパクトがある。

研究成果の概要(英文):We could increase hole mobilities to 12 cm2/Vs by optimizing perovskite transistor architectures. We also demonstrated n-channel operation of perovskite transistors, with electron mobilities of 1.5 cm2/Vs. By reducing the influence of contact resistance between source/drain electrodes and perovskite, we successfully obtained hole mobilities of up to 26 cm2/Vs and electron mobilities of up to 4.6 cm2/Vs. We analyzed degradation mechanisms of perovskite transistors in air. By removing the air-induced degradation sources from films, we developed air-stable perovskite transistors although tin-based perovskites are typically unstable in air. We grew large perovskite single crystals and laminated them on substrates. These laminated single crystal transistors had very high hole mobilities of at least 50 cm2/Vs and electron mobilities of about 36 cm2/Vs because of lower grain boundary density and smaller structure disorder in single crystals.

研究分野:半導体物理

キーワード: 金属ハライドペロブスカイト 電界効果トランジスタ キャリア移動度 大気安定性 単結晶

様 式 C-19、F-19-1、Z-19、CK-19(共通)

1. 研究開始当初の背景

電界効果トランジスタは3端子デバイスであり、ゲート電極、絶縁層、半導体層、ソース /ドレイン電極で構成される。トランジスタは、印加電界により電気シグナルをスイッチング /増幅させるために用いられる。コンピューターの集積回路やディスプレイの駆動回路などと してほとんど全ての電化製品に組み込まれている極めて重要なコンポーネントである。市販さ れているトランジスタの半導体層の多くはシリコンや酸化物などの無機半導体である。有機材 料もトランジスタの半導体層として用いることができる。しかし、有機半導体はスピンコート や真空蒸着などの比較的簡便な方法により薄膜化できるために作製プロセスの観点からは大き な利点があるが、無機半導体と比べるとキャリア移動度は低く、トランジスタの動作速度に問 題が残されている。

金属ハライドペロブスカイトは最近太陽電池の光吸収層として大きな注目を集めている。 20%を超える極めて高い光電変換効率が報告されている(NREL "Best Research-Cell Efficiencies" chart: https://www.nrel.gov/pv/cell-efficiency.html)。この他にも、ペロ ブスカイトは LED の発光層(Nature 562, 245-248, 2018)、レーザー発振のための活性層(ACS Photon. 6. 460-466, 2019)、トランジスタの半導体層(Science 286, 945-947, 1999)などとし て用いることができる。いずれにしても優れたデバイス特性が得られる。ペロブスカイトをト ランジスタの半導体層として応用する場合、3 つの利点が挙げられる。一つ目は、有機薄膜を 作製する際に用いられるような簡便な方法で薄膜化できることにある。二つ目は、膜中に形成 される金属ハライド骨格を介してキャリアが流れるために高いキャリア移動度が期待されるこ とである。太陽電池で用いられる鉛系ペロブスカイトよりもスズ系ペロブスカイトの方が高い キャリア移動度を示すことが知られている(Inorg. Chem. 52, 9019-9038, 2013)。例えば、Hall 効果により測定された CH₃NH₃SnI₃のホール移動度は 322 cm² V⁻¹ s⁻¹、電子移動度は 2320 cm² V⁻¹ s⁻¹と報告されている(Inorg. Chem. 52, 9019-9038, 2013)。本研究で用いたペロブスカイト (C₆H₅C₂H₄NH₃)₂SnI₄[以後(PEA)₂SnI₄と略する]はCH₃NH₃SnI₃と同じようなヨウ化スズ骨格を持つた めに、今後検討を進めれば高いキャリア移動度が得られる可能性がある。三つめは、ペロブス カイトの材料コストの低さにある。有機材料と比べると、カタログベースで1/00以下の価格で 原料を購入することができる。簡単な作製プロセスと低い材料コストを考慮すれば、将来的に 超低コストで超高性能なペロブスカイトトランジスタが得られる可能性がある。

2. 研究の目的

このように将来有望と考えられるペロブスカイトトランジスタであるが、報告されたキャ リア移動度は1 cm² V⁻¹ s⁻¹程度であり、実用化を考えるとさらにデバイス特性を向上させる必 要があった。さらに、その動作機構や長期安定性については未検討であった。例えば、欠陥準 位、接触抵抗、粒界などがデバイス特性に及ぼす影響などについては明らかにされていなかっ た。本研究では、ペロブスカイトトランジスタに関する学理を解明することを試みた。これま で明らかにされていなかった現象を解明し、得られた問題を克服することから、ペロブスカイ トトランジスタ特性を向上させることを試みた。

3.研究の方法

スピンコート法を用いて成膜したペロブスカイトを半導体層としたトランジスタを作製し、 トランジスタ特性を測定した。また、ペロブスカイト単結晶を作製し、基板に張り付けること から単結晶トランジスタを作製した。それぞれの詳細については下記の研究成果で述べる。

4. 研究成果

(1) 基板の表面修飾によるペロブスカイトトラン ジスタの高性能化(雑誌論文の③)

ペロブスカイトトランジスタ構造の模式図を図 1a に示す。未修飾の基板上に (PEA)₂SnI₄ をスピン コートすると、歪んだペロブスカイト構造及び未 反応原料が多量に含まれている膜が形成されるこ とが分かった。ペロブスカイト構造の歪みはキャ リア移動度を低下させる原因となる。また、未反 応原料である PEAI と SnI₂は (PEA)₂SnI₄よりも大き なバンドギャップを示すために、未反応原料がペ ロブスカイト膜中に含まれているとキャリアが散 乱され、トランジスタ特性が低下する。そこで本 研究では、NH₃I 末端を持つ自己組織化単分子膜 (NH₃I-SAM)で基板表面を修飾した。NH₃I 末端はペ ロブスカイト構造の一部として機能するために、 良質なペロブスカイト膜がNH₃I-SAM上で成長する。 XRD 測定を行うと、ペロブスカイト由来の(001)面 からの回折ピークの強度が増加し、半値幅が減少 した。この結果は、ペロブスカイト構造の歪みが

図 1. (a)ペロブスカイトトランジスタ 構造の代表例. NH₃I-SAM を用いたトッ プコンタクト/トップゲート型ペロブ スカイトトランジスタの (b) アウトプッ ト特性と(b)トランスファー特性.

解消されたことやペロブスカイト結晶が大きくなったことを示すものである。さらに、PEAI と SnI₂といった未反応原料由来の回折ピークが消失したことから、NH₃I-SAM を用いると原料から ペロブスカイトへの変換が向上したことが考えられる。AFM 測定の結果から、NH₃I-SAM を用い ることによりペロブスカイト結晶が大きくなっていることも確認した。NH₃I-SAM を用いてない ペロブスカイトトランジスタのホール移動度は 0.5cm² V⁻1 s⁻1程度で、大きなヒステリシスが観 測された。ところが、NH₃I-SAM を用いるとペロブスカイト膜質が向上したために、ホール移動 度は 2.5 cm² V-1 s-1まで向上した。ヒステリシスの原因としてイオンのマイグレーションが考 えられる。このイオン源として考えられる未反応原料量が減少したために、NH₃I-SAM を用いた ペロブスカイトトランジスタでは全くヒステリシスが観測されなくなった。NH₃I-SAM の使用に 加えて、トランジスタ構造の最適化を行った。ホール注入特性を向上させるために、トップコ ンタクト構造を採用した。さらに高仕事関数の Au/MoO_x電極構造を用いた。このトランジスタ においてホール移動度 7.1 cm² V⁻¹ s⁻¹が得られた。過渡発光特性を解析することにより、基板 /ペロブスカイト近傍よりも、反対側のペロブスカイト/空気界面近傍の方の欠陥密度が低い ことが分かった。この欠陥密度が低い界面にキャリアを流せば、より高いトランジスタ特性が 得られる。フッ素系ポリマーである CYTOP を(PEA)₂SnI4の上に成膜し絶縁層として用いた。こ のトップゲート構造のペロブスカイトトランジスタのホール移動度は12 cm² V⁻¹ s⁻¹であった(図 1bと1c)。このトランジスタの閾値電圧は-22 V、0N/0FF 比は10⁶、subthreshold swing は0.8 V/decade であった。NH3I-SAM による基板の表面修飾とトランジスタ構造の最適化によりホール 移動度を約24倍に向上させることに成功した。

(2) 電極との化学反応の抑制による N型駆動の実現(雑誌論文の②)

前述した Au/MoO_xソースドレ イン電極を用いたペロブスカイ トトランジスタにおいては、N型 特性は全く観測されなかった。Au と MoOx の仕事関数は非常に大き いために、(PEA)₂SnI₄との間の電 子注入障壁が非常に大きいこと が原因と考えられた。そこで低仕 事関数の Ag, Al, MgAg, Ca, Cs 電極などを用いてペロブスカイ トトランジスタを作製したが、N 型特性は全く観測されなかった。 (PEA)₂SnI₄の上に電極(例えば A1)を直接積層させると多数のピ ンホールが形成され、電極が半透 明になった(図 2a)。(PEA)₂SnI₄ と電極の間で化学反応が生じて いることが考えられた。そこで電

図2. (a) (PEA) $_2$ SnI₄の上に真空蒸着されたA1 膜の写真. A1 を (PEA) $_2$ SnI₄の上に直接積層させると化学反応によ り多数のピンホールが形成され、A1 が半透明になった. C₆₀ バッファ層を (PEA) $_2$ SnI₄ と A1 の間に挿入するとピン ホールの形成と A1 の退色が抑制された. (b) A1 ソース /ドレイン電極と C₆₀ バッファ層を用いた (PEA) $_2$ SnI₄ ト ランジスタの N型アウトプット特性

極と (PEA) $_{2}$ SnI₄の間に C₆₀ バッファ層を挿入した。C₆₀層の挿入によりピンホールの形成と電極の 退色が抑制された (図 2a)。物理的接触を避けることにより化学反応が抑制されたと推測される。 この C₆₀ バッファ層を挿入したペロブスカイトトランジスタを作製した。P型トランジスタで高 い性能が得られた、NH₃I-SAM を用いたトップコンタクト/トップゲート構造を採用した。C₆₀ バッファ層は電子注入に適した LUMO 準位を持っているために、高仕事関数の Au のソース/ド レイン電極を用いても N型特性が得られ、この際の電子移動度は 0.6 cm² V⁻¹ s⁻¹ であった。Au よりも低仕事関数の電極を用いるとさらに電子移動度は向上した。例えば、Ag 電極を用いると 1.1 cm² V⁻¹ s⁻¹、A1 電極を用いると 1.5 cm² V⁻¹ s⁻¹であった(図 2b)。A1/C₆₀ 電極を用いたトラ ンジスタの閾値電圧は 47 V、ON/OFF 比は 10⁴、subthreshold swing は 1.1 V/decade であった。 電極構造の最適化により (PEA) $_{2}$ SnI₄において初めて N型特性が観測されるようになった。

前項で議論した P型トランジスタと比較すると、N型トランジスタの電子移動度と閾値電 圧は大幅に劣っていた。熱刺激電流法を用いて絶縁層/ペロブスカイト界面におけるキャリア トラップ・シート密度を測定した。ホールトラップ・シート密度は(1.4±0.1)×10¹¹ cm⁻² であ った一方で、電子トラップ・シート密度は(5.7±0.5)×10¹² cm⁻² であった。電子トラップ・シ ート密度は約 40 倍大きいために、N型トランジスタ特性の方が劣っていたと考えらえる。さら に、ペロブスカイトトランジスタの N型特性は酸素に非常に敏感で、酸素曝露により N型特性 は消失した。真空中で保管することによりサンプルから酸素を取り除くと、N型特性が再び現 れた。電子トラップの起源として、ペロブスカイト/絶縁膜近傍に僅かに残された酸素の可能 性が考えられる。

(3) 接触抵抗とトランジスタ特性の相関(雑誌論文の①)

P型とN型ペロブスカイトトランジスタにおいて優れた特性が得られたが、電極とペロブ スカイトの界面に大きな接触抵抗が存在していることが問題であった。実用化のためにはソー ス/ドレイン電極の間のチャンネル長は短い方が良い。しかし、本研究では、接触抵抗が無い 状態におけるペロブスカイト の本来のキャリア輸送特性を 議論力させた。P型及びN型ペ ロブスカイトトランジスタの いずれにおいても、チャネル長 動たおいても、チャネル長 動たになるほどキャリア移 動定が増加した(図 3a)。チャ ン移動度値は一定となった。こ の領域においては、全抵抗にで きるほど小さくなったために、

図 3. (PEA)₂SnI₄ トランジスタの(a) キャリア移動度と(b) 閾値電圧のチャンネル長依存性.

ペロブスカイト本来のキャリア移動度が観測されたと考えられる。この領域におけるホール移動度は最大値で 26 cm² V⁻¹ s⁻¹、電子移動度は 4.6 cm² V⁻¹ s⁻¹に達した。接触抵抗の寄与が減少することで閾値電圧も減少することが分かった (図 3b)。 0N/0FF 比と subthreshold swing に明確なチャンネル長依存性は見られなかった。Transmission line method により接触抵抗値を見積もると、P型トランジスタで 10⁻⁵ Ω cm オーダー、N型トランジスタで 10⁻⁴ Ω cm オーダーであった。これらが、チャンネル長が小さいときにデバイス特性を減少させる原因である。

(4) 劣化メカニズムの解明による大気安定なペロブスカイトトランジスタの実現(Journal of Applied Physics に掲載決定済み)

前述した P型及び N型ペ ロブスカイトトランジスタ は真空中では優れたバイア ス安定性を示す。しかし、大 気中では非常に不安定であ った。ペロブスカイト構造の 維持に必要な Sn²⁺イオンが Sn⁴⁺イオンに酸化させること でキャリアドープが生じる ことが主な原因と考えられ る(Angew. Chem. Int. Ed. 55, 3447 -3450, 2016)。スズ系 のペロブスカイト太陽電池

も大気中で不安定であることが知られており、酸化を抑制するために多量の SnF₂ 還元剤が添加 される場合が多い(J. Mater. Chem. A 3, 14996-15000, 2015)。本研究で用いた (PEA)₂SnI₄ は SnF₂ などの還元剤を用いずとも適切なトランジスタ特性得られるので、他のスズ系ペロブスカ イトよりも酸化に強いと推測される。しかし、それでも大気中でトランジスタ特性が急激に減 少した。我々のグループにおいても様々な雰囲気で劣化試験を行った結果、大気中の水分では 劣化は生じないが、酸素雰囲気で劣化生じることを確認した。スピンコート法で作製した (PEA)₂SnI₄膜は多結晶性であるために、膜中に多数の粒界が存在する (図 4a)。粒界面積が大き いほど酸化が生じやすいと考えられる。そこで、ペロブスカイトのスピンコート条件を最適化 することからペロブスカイト粒子を大きく成長させることを試みた。具体的には、より高沸点 の溶媒であるエタノールを用い(初期の溶媒はメタノール)、アニール温度を 80°C (初期)から 100°Cに向上させると、膜の連続性を維持したまま結晶性に優れた膜が得られることが分かった。 SEM 測定結果より、初期の膜の粒子直径は 30-60 nm 程度であったが、最適化された膜の粒子直 径は 300-600 nm であった。キャリアの輸送を妨げると考えられる粒界密度の減少に伴い、ホー ル移動度は 0.4 cm² V⁻¹ s⁻¹から 7.9 cm² V⁻¹ s⁻¹に約 20 倍に増加した。

初期のペロブスカイトトランジスタは大気中において1時間以内でドレイン電流が急激に 減少した。しかし、最適化したペロブスカイトトランジスタは1.5倍良好な大気安定性を示 した。それでも大気中で劣化が生じていたために、フッ素系ポリマーである CYTOP を (PEA)₂SnI₄ 膜の上にスピンコート法により成膜することで簡易封止を行った。大きなペロブスカイト粒子 を CYTOP 膜で覆うと、酸素の侵入を大幅に抑制することができ、5時間大気中に保管してもほ とんど劣化しないペロブスカイトトランジスタを実現した(図 4b)。

(5) ラミネート法によるペロブスカイト単結晶トランジスタの作製(投稿準備中)

粒界はキャリア輸送を妨げ、大気安定性を低下させる原因である。粒界を可能な限り低減 させれば、極めて高性能なペロブスカイトトランジスタが実現すると期待される。そこで、ス ピンコートに用いた溶液を冷凍庫で冷却することにより、粒界が極めて少ないと考えられるペ ロブスカイト単結晶を成長させた。低温ではペロブスカイトの溶解度が減少するために、大き な結晶が析出する。ミリメートルサイズのペロブスカイト結晶が得られた(図 5a)。しかし、単 晶表面は非常に粗く、未反応 原料やペロブスカイト構造 が歪んだ物が含まれる残渣 層で覆われていた。この残渣 層をテープにより剥離し、ソ ース/ドレイン電極付きの 基板に張り付けることで単 結晶トランジスタを作製し た。いくつかの単結晶デバイ スタ特性が得られた(図 5b)。 しかし、残渣層を剥離しても 単結晶表面は完全に平らで

図 5. (a)ペロブスカイト単結晶. (b)単結晶トランジスタ のアウトプット特性.

はなく、基板とのコンタクトに問題があった。また、キャリア移動度を計算するために必要な チャンネル幅及び絶縁層の静電容量の見積もりが難しかった。このような問題があるために、 キャリア移動度を正確に計算することは難しかったが、ホール移動度はおよそ 30-100 cm² V⁻¹ s⁻¹ であった。スピンコート膜よりも優れたトランジスタ特性が得られたのは、粒界密度が小さい ためである。さらに、粒界密度の減少により、優れたバイアス安定性及び大気安定性が得られ た。単結晶トランジスタにおいては、ほとんど大気中における劣化は観測されなかった。粒界 が無い高品質な単結晶では大気劣化が生じにくい可能性や、厚い単結晶によりチャンネル領域 まで酸素が到達しにくいことが考えられる。

5. 主な発表論文等

〔雑誌論文〕(計32件)

- ① <u>Toshinori Matsushima</u>*, Sunbin Hwang, Shinobu Terakawa, <u>Takashi Fujihara</u>, <u>Atula S.</u> <u>D. Sandanayaka</u>, <u>Chuanjiang Qin</u>, and <u>Chihaya Adachi</u>*, Intrinsic carrier transport properties of solution-processed organic-inorganic perovskite films, Applied Physics Express, 10 (2), 024103, 2017 (DOI: org/10.7567/APEX.10.024103) (査読有)
- ② <u>Toshinori Matsushima</u>*, Fabrice Mathevet, Benoît Heinrich, Shinobu Terakawa, <u>Takashi Fujihara</u>, <u>Chuanjiang Qin</u>, <u>Atula S. D. Sandanayaka</u>, Jean-Charles Ribierre, and <u>Chihaya Adachi</u>*, *N*-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor, Applied Physics Letters, 109 (25), 253301, 2016. (DOI: 10.1063/1.4972404) (査読有)
- ③ <u>Toshinori Matsushima</u>*, Sunbin Hwang, <u>Atula S. D. Sandanayaka</u>, <u>Chuanjiang Qin</u>, Shinobu Terakawa, <u>Takashi Fujihara</u>, Masayuki Yahiro, and <u>Chihaya Adachi</u>*, Solution-Processed Organic-Inorganic Perovskite Field-Effect Transistors with High Hole Mobilities, Advanced Materials, 28 (46), 10275-10281, 2016 (DOI: 10.1002/adma.201603126) (査読有)

〔学会発表〕(計 112 件)

- ① <u>Toshinori Matsushima</u> and <u>Chihaya Adachi</u>, Solution-processed organic-inorganic perovskite thin film transistors, 2018 International Conference on Solid State Devices and Materials (SSDM2018), University of Tokyo, Tokyo, Japan, Sptember 9-13, 2018 (招待講演)
- ② <u>T. Matsushima</u>, <u>A. S. D. Sandanayaka</u>, <u>C. Qin</u>, <u>T. Fujihara</u>, and <u>C. Adachi</u>, Solution-Processed Organic-Inorganic Perovskite Thin-Film Transistors with High Carrier Mobilities, IUMRS-ICAM 2017, Yoshida Campus, Kyoto University, Kyoto, Japan, August 27-Sptember 1, 2017 (招待講演)
- ③ <u>Toshinori Matsushima</u>, <u>Atula S. D. Sandanayaka</u>, <u>Chuanjiang Qin</u>, <u>Takashi Fujihara</u>, and <u>Chihaya Adachi</u>, Field-effect transistors with an organic-inorganic perovskite semiconductor, International Symposium on Organic and Polymeric Optoelectronics (ISOPO 2017), Changchun, China, June 28-30, 2017 (招待講演)

〔図書〕(計17件)

① <u>松島 敏則</u>, 金属ハライドペロブスカイト LED, 応用物理(応用物理学会会誌), vol.88,

No. 5, page 328-333 (2019)

② 松島敏則, サンガランゲ ドン アトゥラ サンダナヤカ, シン センコウ,藤原隆,安達 千波矢,溶液プロセスで作製した高移動度ペロブスカイトトランジスタ,電子情報通信 学会技術研究報告,有機エレクトロニクス, 0ME2017-45, 2017

〔産業財産権〕 〇出願状況(計 26 件)

 ① 名称: 2次元ペロブスカイト形成用材料、積層体、素子およびトランジスタ 番号: PCT/JP2016/83932
出願日: 2016年11月16日
出願人:国立大学法人九州大学
発明者: 松島敏則,シンセンコウ,安達千波矢
国内外の別:国内と国外

〇取得状況

特許取得に向けて審査中

[その他]

ホームページ等 http://www.cstf.kyushu-u.ac.jp/~adachilab/lab/

6. 研究組織

(1)研究分担者 なし

(2)研究協力者 研究協力者氏名:藤原 隆 ローマ字氏名:Takashi Fujiwara

研究協力者氏名:秦 川江 ローマ字氏名:Chuanjiang Qin

研究協力者氏名:サンガランゲ ドン アトゥラ サンダナヤカ ローマ字氏名:Atula Sangarange Don Sandanayaka

研究協力者氏名:合志 憲一 ローマ字氏名:Kenichi Goshi

研究協力者氏名:安達 千波矢 ローマ字氏名:Chihaya Adachi

※科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等については、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。