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Transcriptional model of declarative memory from hippocampus to neocortex
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In this study, we were aimed at modeling the complementary learning system
in the hippocampus and neocortex responsible for memories about events and facts. In particular, we
focused on the neocortex, which is the locus of long-term memory. We considered what kind of
mechanism would be required to prevent old memories from being destroyed by new memories, and
constructed biologically plausible models. By examining their characteristics by computer
simulation, we have revealed that it is possible to reduce catastrophic forgetting by combining a
biologically relevant learning method that does not propagate output errors backward through the
network and pseudorehearsal. We have also shown that catastrophic forgetting is further reduced by
considering the importance of weights.
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