科学研究費助成事業(基盤研究(S))公表用資料 〔令和2(2020)年度研究進捗評価用〕

平成29年度採択分 令和2年3月31日現在

研究の概要(4行以内)

超低速ミュオンを再加速することで、時間・空間コヒーレンスに優れた高輝度ミュオンマイクロ ビームを創生し、ミュオンの波動性を実証するとともに、透過型ミュオン顕微鏡を開発し、「生 きた細胞まるごと1個の機能を観る」という新たな顕微法イメージングを確立する。 研 究 分 野:量子ビーム科学

キーワード:ミュオン、超低速ミュオン、レーザー、顕微鏡、量子可干渉性、波動性

1. 研究開始当初の背景

新学術領域研究「超低速ミュオン顕微鏡」(鳥 養映子代表、平成 23-27 年度)において、J-PARC ミュオン施設で得られる世界最高強度 のパルス表面ミュオン (4MeV)を 0.2eV まで 7 桁冷却した超低速ミュオンの生成に成功し た。超低速ミュオンは、表面ミュオンをタン グステン箔に入射することで真空中に放出さ れるミュオニウム(正ミュオンと電子が結合 した軽い水素様原子、Mu)から、レーザー共 鳴イオン化法 (1s-2p-unbound) により電子を 剥ぎ取ることで生成される。この超低速ミュ オンは静電場を用いて最大30keVで取り出す ことが可能であり、物質界面を有する多層膜、 ナノ構造を含む新機能性物質等の薄膜界面の 局所磁場、電子状態、スピン伝導の超高感度 観測等に用いられる。

2. 研究の目的

本計画では、超低速ミュオンを再加速するこ とで、時間・空間コヒーレンスに優れた高輝度 ミュオンマイクロビームを創生し、ミュオン の波動性を実証するとともに、透過型ミュオ ン顕微鏡を開発し、「生きた細胞まるごと1個 の機能を観る」という新たな顕微法イメージ ングを確立する。

ミュオンは電子より 200 倍重いため、同じ速 度で約 200 倍の試料透過能力を有し、荷電粒 子であることから電磁場の可視化能力を有す る。超低速ミュオンを再加速しエネルギーを上 げることにより、超高圧電子顕微鏡をもって しても到達不可能な 10 µ m 厚のトモグラフィ **3 次元測定、生きた細胞の透過観察を実現する** ことが可能となる(図 1)。これは電子顕微鏡 と光学顕微鏡の分解能ギャップを埋める全く 新しい顕微鏡である。

まずは超低速ミュオンを誘導加速器で 300keVまで再加速し、回折実験を行うことで ミュオンの量子可干渉性を直接証明する。こ れは標準模型の第2世代以降の粒子の量子可 干渉性の初の直接証明である。次に、更に 10MeVまで再加速することで、深さ10µm以 上の対象物を分解能1µm以下で観察可能な 透過型ミュオン顕微鏡を開発する。最終的に は、ミュオン冷却の多段化と収差補正により、

図 1. 透過型ミュオン顕微鏡が目指す、10 μm 厚試料の 3D イメージングと電子顕微 鏡の比較。透過型ミュオン顕微鏡は、生き た細胞の透過観察を可能にする。 分解能 0.1nm への性能向上を目指す。以下の 4 つの研究開発項目を達成し、透過型ミュオン 顕微鏡を実現する。

(A) 超低速ミュオン再加速技術の開発

(B) 超伝導対物レンズの開発

- (C) 透過ミュオンイメージング手法の確立
- (D) 実用材料のイメージング

3. 研究の方法

上記(A)~(D)の技術を個別に開発、J-PARC において統合し透過ミュオン顕微鏡を組み上 げる。(C)のイメージング手法は先行して開 発、超低速ビームラインに接続し、ミュオン 回折実験を行いミュオンの波動性を証明する。 透過ミュオン顕微鏡の調整はイメージング実 験と併せて実施し、分解能を向上させてゆき、 最終的には各時点での分解能に適合した(D) 実用材料のイメージング実験を行う。

4. これまでの成果

(A) 超低速ミュオン再加速技術の開発

透過型ミュオン顕微鏡に必要なより高エネ ルギーへの加速手法として、申請時には誘導 加速マイクロトロンを計画したが、物理設計 の結果、フラットトップ RF サイクロトロン はミュオン寿命よりも早く加速でき効率的と 判明し、これを詳細設計した。予算的制約か ら加速能力を 10MeV から 5MeV へと変更し たが、当初目標通りの 105 安定度の詳細設計 に成功し、2020 年秋のビームタイムに合わせ て稼働予定であり、予定通り進んでいる。詳 細なビームシミュレーションに基づいてサイ クロトロンの設計を行った(図 2)。サイクロト ロンを構成する電磁石等の機器の製作は完了 した(図3)。誘導加速器も開発に成功しており、 電子加速で性能等を確認した。回折実験のエ ネルギー可変の手段として用いる予定である。

図 2. (左)サイクロトロン中心領域におけるビ ーム軌道。(右)シミュレーション結果。パルス 幅 200ps (RF 位相幅 8°) の超低速ミュオン が約 60 ターンで 5MeV まで加速、エネルギー 分散 ΔE/E を 10⁵ 台に抑制可能な設計。

図 3. 完成したサイクロトロンのマグネットと RF 空洞の一部。2020 年 J-PARC に設置予定。

(B) 超伝導対物レンズの開発

日本電子より超伝導対物レンズを供与され、 極低温化での再起動試験を実施している。 1980年代の技術の復活のため技術情報の一 部に散逸があり、クエンチ等の装置の故障を 避けるため慎重な再起動実験を実施している。 このため、当初予定よりも半年ほどの遅れが あるが、期間内の開発には問題とならない見 込みである。

(C) 透過ミュオンイメージング手法の確立

透過ミュオン顕微鏡の試料ステージ、ミュ オン用イメージセンサ等の動作を確認した。 これらを用い、ミュオンの量子可干渉性の証 明になるミュオン回折実験が現在進行中であ り、統計が少ないため確定ではないが、既に ミュオン回折現象の兆候を捉えている。

図 4. ミュオン回折実験の 途中経過の像。統計が少な く確定ではないが、回折ス ポット位置に複数のミュ オンを捉え、兆候を示して いる。

5. 今後の計画

継続中のミュオン回折実験を 2020 年度の できるだけ早い時期に完了し、ミュオンの波 動性を直接証明する。2020 年度にサイクロト ロンの磁場測定や高周波系の試験を行い、J-PARC 超低速ミュオンビームラインに接続、 ビームコミッショニングが終わり次第、透過 型ミュオン顕微イメージングを開始する。最 終的には、厚いや凍結生物試料の透過ミュオ ン顕微鏡イメージング実験を実施する。

6.これまでの発表論文等(受賞等も含む)○発表論文 (下記含む計 13件)

A.D. Pant, T. Adachi, P. Strasser, Y. Ikedo, Y. Oishi, J. Nakamura, W. Higemoto, K. Shimomura, R. Kadono, <u>Y. Miyake</u>, <u>E.</u> Torikai, "Characterization and optimization of ultra slow muon beam at J-PARC/MUSE: A simulation study", Nuclear Inst. and Methods in Physics Research, A 929 (2019) 129-133, (2019)

○発表(下記含む計 28 件)

(招待講演)<u>三宅康博</u>, "Ultra Slow Muon Generation and Its Application for Transmission Muon Microscopy at J-PARC Muon Facility, MUSE", The 3rd J-PARC Symposium (J-PARC2019), 2019

(招待講演)<u>三宅康博</u>, "高輝度ミュオンマイク ロビームによる透過型ミュオン顕微鏡イメー ジングにむけて",日本顕微鏡学会 第61回シ ンポジウム,2018

7. ホームページ等

http://slowmuon.kek.jp/MuonMicroscopy.html