科学研究費補助金研究成果報告書

平成22年 6月 8日現在

研究種目:若手研究(B) 研究期間:2006~2009 課題番号:18710151

研究課題名(和文)地震動パラドックス解明のための最適震源モデルの構築

研究課題名 (英文) Optimized Source Model for Investigating Ground Motion Paradox

研究代表者

三宅 弘恵 (MIYAKE HIROE) 東京大学・地震研究所・助教 研究者番号:90401265

研究成果の概要:本研究課題では、地表断層地震と地中断層地震の震源近傍の地震動強さが周期1秒付近で逆転する地震動パラドックスについて、震源サイドの動力学的な原因を定量的に明らかにする。そして、地震動パラドックスが再現可能な震源のモデル化手法を構築する。

交付額

(金額単位:円)

			(35 h)(1-157 · 14)
	直接経費	間接経費	合 計
2006年度	1, 300, 000	0	1, 300, 000
2007年度	1, 100, 000	0	1, 100, 000
2008年度	1, 100, 000	330, 000	1, 430, 000
年度			
年度			
総計	3, 500, 000	330, 000	3, 830, 000

研究分野:強震動地震学

科研費の分科・細目:社会・安全システム科学・自然災害科学

キーワード: 地震動・断層・震源・強震動予測・アスペリティ・スケーリング・地表断層地震・地中断層地震

1. 研究開始当初の背景

断層近傍の地震動は果たしてどこまで大 きくなることができるのだろうか? 地震 学では、地震の規模が大きくなると断層面積 やアスペリティ面積が大きくなる、いわゆる 地震のスケーリング則が広く知られている。 しかしながら、Mw 6.7~7.0 クラスの地中断 層地震から生成される周期1秒付近の地震動 レベルは、Mw 7.2~7.6 クラスの地表断層地 震から生成されるそれよりも大きいという 興味深い現象が Somerville (2003) によっ て報告された。この地震動パラドックスは、 小地震から大地震を単純につなぐ従来のス ケーリング則だけでは、地震動のローカルな 逆転現象が説明できないことを意味してい る。しかも、仮にこの現象が真であるならば、 Mw 7.0 の地震から生成される断層近傍の地 震動が一番大きくなることになる。

2. 研究の目的

本研究課題では、地表断層地震と地中断層 地震の震源近傍の地震動強さが周期1秒付 近で逆転する地震動パラドックスについて、 震源サイドの動力学的な原因を定量的に明 らかにすることを目的とする。そして、地震 動パラドックスが再現可能な震源のモデル 化手法を構築し、断層パラメータの物理的な 上限を明らかにすることによって、地震動の 上限値について考察する。

3. 研究の方法

研究手法は下記の3つに分類される。

(1)地表地震断層と地中断層地震の分類を行い、断層パラメータに見られる違いを抽出す

る。

- (2) 地表地震断層と地中断層地震に対する 震源モデルを構築し、特性化震源モデルによ る動力学シミュレーションおよび地震動シ ミュレーションを行い、地震動パラドックス が再現可能か検討する。
- (3) 実地震の解析を重ね、構築した震源モデルの妥当性を検証する。

4. 研究成果

(1)初年度は、1999 年トルコ・コジャエリ地震(地表断層地震)、1992 年米国・ランダース地震(地表断層地震)、1996 年米国・ノースリッジ地震(地中断層地震)、1997 年日本・鹿児島県北西部地震(地中断層地震)などを対象として、震源近傍の地震動記録説さを認力と、大変がある。また、震源インバージョンかから得いた、また、震源インバージョンがからいた、また、震源インバージョンがからいた、大変を関係がある場合がある。また、震源インバージョンがかららいた、大変を関係がある場合がある。また、震源インバージョンがからに、地震動パラメータのスケーリングから場合が、大変を関係がある場合がある。また、大変を関係がある。上記に基づき、摩擦構成則のモデル化を行った。

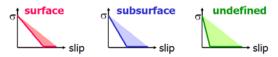


図 1. 地震規模が等しいと仮定してモデル化 された地表断層地震(左)、地中断層地震(中)、 震源が特定できない地震(右)の摩擦構成則 と地震波エネルギー領域。

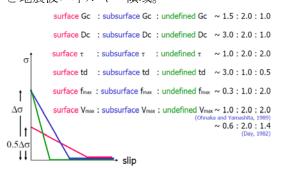


図 2. 実地震の断層パラメータのスケーリングに基づきモデル化された地表断層地震、地中断層地震、震源が特定できない地震の摩擦構成則と各パラメータの比率。

次いで、地中断層地震に相当すると考えられる 2005 年福岡県西方沖地震について経験的グリーン関数法による広帯域地震動シミュレーションを行い、震源モデルを構築した(Miyake et al., 2006, 三宅・他, 2007)。 2005 年福岡県西方沖地震の強震動生成域の応力降下量は、内陸地殻内地震の平均値よりもやや大きく、地中断層地震の特徴が見られた。

(2) 次年度は、Mw 6.7~7.0 クラスの地中断 層地震から生成される周期1秒付近の地震動 レベルは、Mw 7.2~7.6 クラスの地表断層地 震から生成されるそれよりも大きいという、 Somerville (2003) によって提唱された地震 動パラドックスの仮説を検証するため、Mw 6.0~7.5 クラスの地震を想定し、震源近傍 の地震動の逆転現象を動力学的震源モデル によって再現することにより、その成因を考 察した (Dalguer, Miyake, et al., 2008)。 断層の破壊開始点を地中断層地震ではアス ペリティよりも深く、地表断層地震について はほぼ同じ深さに配し、かつ地中断層地震に 比べて地表断層地震のアスペリティ領域の 破壊エネルギーを大きくした場合に、震源近 傍の地震動の逆転現象が再現されることが 確認された。

また、このような震源近傍の地震動が含む 長周期成分に着目し、震源近傍の長周期地震 動と位置づけることとした(Koketsu and Miyake, 2008)。

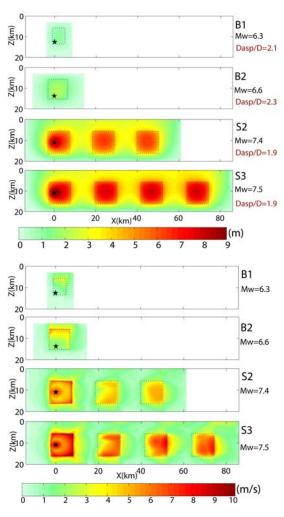


図 3. 地中断層地震 (B1, B2) と地表断層地 震 (S2, S3) の特性化震源モデルによる動力 学シミュレーションの結果。上図がすべり分 布、下図が最大すべり速度分布を示す。

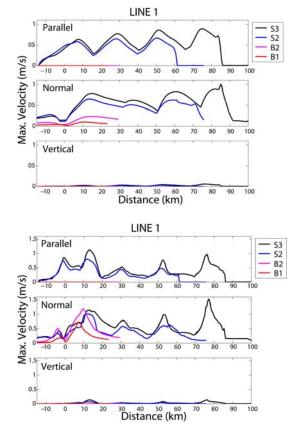


図 4. 地中断層地震(B1, B2)と地表断層地震(S2, S3)の動力学シミュレーションにより予測された最大速度。上図が周期1秒以上の長周期成分、下図が周期1秒以下の短周期成分を示す。

さらに、研究進行中に発生した、地中断層 地震に相当すると考えられる 2007 年新潟 県中越沖地震について、柏崎刈羽原子力発電 所をはじめとする震源近傍で記録された極 大地震動の成因を考察するため(纐纈・三宅, 2008)、経験的グリーン関数法による広帯域 地震動シミュレーションを行い、震源のモデ ル化に着手した。

(3)最終年度は、2007年新潟県中越沖地震の極大地震動の成因について、震源インバージョンや断層面に関する議論と共に論文にまとめた(Miyake et al., 2010)。広帯域地震動シミュレーションによって推定された2007年新潟県中越沖地震の強震動生成域の応力降下量は、内陸地殻内地震の平均値よりも大きく、地中断層地震の特徴が見られた。さらに、2008年中国・四川地震、2008年岩手・宮城内陸地震などの内陸地殻内地震において、地震動パラドックスが成り立つかどうか検討した。

また、内陸地殻内地震の震源モデルの平均像を構築する手法である、強震動予測レシピに関する論文をまとめた(Irikura and

Miyake, 2010)。本研究課題で提案した地表 断層地震と地中断層地震の震源モデル化は、 この平均像からの偏差として表現される。

図 5. 内陸地殻内地震の地震モーメントと断層面積のスケーリング。Mw 7.2 \sim 7.6 クラスの地表断層地震が、Irikura and Miyake (2001) のスケーリングを下回ることは少ない。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計8件)

- ①Irikura, K., and <u>H. Miyake</u>, Recipe for predicting strong ground motion from crustal earthquake scenarios, Pure Appl. Geophys., doi:10.1007/s00024-010-0150-9 (2010) 査読有.
- ②<u>Miyake, H.</u>, K. Koketsu, K. Hikima, M. Shinohara, and T. Kanazawa, Source fault of the 2007 Chuetsu-oki, Japan, earthquake, Bull. Seismol. Soc. Am., 100, 384-391 (2010) 查読有.
- ③纐纈一起・<u>三宅弘恵</u>,2007 年新潟県中越沖 地震の震源断層面と柏崎刈羽の強震動, 地震ジャーナル,45,27-35 (2008) 査読 無
- ④Dalguer, L. A., <u>H. Miyake</u>, S. M. Day, and K. Irikura, Surface rupturing and buried dynamic-rupture models calibrated with statistical observations of past earthquakes, Bull. Seismol. Soc. Am., 98, 1147-1161 (2008) 査読有.
- (5) Koketsu, K., and <u>H. Miyake</u>, A seismological overview of long-period

- ground motion, J. Seismol., 12, 133-143 (2008) 査読有.
- ⑥三宅弘恵・纐纈一起・田中康久・坂上実・ 石垣祐三,福岡県西方沖地震・玄界島の強 震動の再現,月刊地球,29,111-115 (2007)査読無.
- ⑦ Miyake, H., Y. Tanaka, M. Sakaue, K. Koketsu, and Y. Ishigaki, Empirical Green's function simulation of broadband ground motions on Genkai Island during the 2005 West Off Fukuoka Prefecture earthquake, Earth Planets Space, 58, 1637-1642 (2006) 査読有.
- (图Mai, P. M., P. Somerville, A. Pitarka, L. Dalguer, S. Song, G. Beroza, H. Miyake, and K. Irikura, On scaling of fracture energy and stress drop in dynamic rupture models: Consequences for near-source ground-motions, Earthquakes: Radiated Energy and the Physics of Faulting, AGU Geophysical Monograph Series, 170, 283-294 (2006) 査読有.

[学会発表](計2件)

- ①三宅 <u>弘恵</u>・木村 武志・塚越 大・纐纈 一起,2008 年岩手・宮城内陸地震の臨時強震 観測と上盤効果の検討,京都大学防災研 究所研究集会「近年の大地震の特徴と構造 物の耐震性に関する研究集会」,2009 年 1 月 21 日,京都.
- ②三宅 弘恵・纐纈 一起, 2007 年新潟県中越沖地震の震源モデルと広帯域強震動シミュレーション, 日本地震学会 2007 年秋季大会, 2007 年 10 月 24 日, 仙台.
- 6. 研究組織
- (1)研究代表者

三宅 弘恵 (MIYAKE HIROE) 東京大学・地震研究所・助教 研究者番号:90401265