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We have generated a comprehensive dataset that could be informative for those who study adipose
tissue function and metabolic disease. We found genes that were significantly regulated by high-fat
diet and could regulate lipid metabolism. These genes could be potential drug targets to treat
obesity.

In this KAKENHI project, we proposed to discover biomarkers of aging and
age-related metabolic diseases. We have applied the data-independent acquisition mass spectrometry
(DIA-MS) method to mouse white adipose tissue (WAT) samples. We have generated a complete protein
quantification map for 4727 proteins from 180 WAT samples of 53 mouse strains from the BXD aging
colony. From these data, we have identified potential biomarkers for age-related obesity and
metabolic dysfunction. We also expanded proteomics analysis to specific cell types from WAT tissues
under high-fat and control diet. We found proteins that were significantly regulated by diet in a
time-dependent manner, and candidate genes that could regulate lipid metabolism in macrophages. We
have also identified cellular ligand-receptor pairs that changed significantly during diet-induced
obesity. We believe our results provide novel evidence of the underlying mechanism of obesity
through adipose tissue cell-cell communication.
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1. BrREBMBUFIDE &

The mechanism of how genotype and environment coordinately influence phenotype remains a fundamental
question in biology. Genetic reference panels, such as the BXD mice, are ideal resources to study complex
diseases and gene-by-environment interactions (GXE) 1.2. Recent advances in mass spectrometry (MS) have
expanded the scope and reliability of proteomic and metabolomic measurements 3. Previously, we have
developed the Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH-MS)
technology, which enabled precise quantification of thousands of proteins across large number of cohorts 4. I
applied this integrative strategy to determine the genetic basis of changes of protein abundance and
composition in liver samples from the BXD mice population 56. I found a nominal correlation between
transcripts and their corresponding proteins, and identified dozens of protein traits that are causative to
metabolic status of the BXD mice. However, such data sets had not been generated for the white adipose
tissues (WAT). In addition, cell type-specific gene expression changes at the protein level during the
development of obesity remains largely unknown.

In the proposed project, I planned to applied the integrated strategy to explore proteome changes in visceral
white adipose tissue from a range of BXD mouse strains and under different dietary conditions. The data
from the BXD mice could be a great resource to study the genetic and environmental effects on obesity, but
only bulk tissues were available for the BXD mice. Thus, I also planned to perform cell type-specific
proteomics analysis for the adipose tissue, by analyzing several types of adipose tissue cells collected at
different time points under high-fat diet (HFD) and control diet (CD) feeding, and identify cell type- and time-
dependent proteome perturbation regulated by HFD feeding.

2. FROEH

The goal of this project is to identify proteins and/or protein modules in adipose tissue and specific cell types
that are regulated by energy excess in a time-dependent manner. At cell type level, we investigate autocrine
and intercellular network at different time points of HFD feeding. We expect that this information can
provide evidence to develop effective strategies for diagnosis, prevention and treatment of common diseases
and health decline that are associated with obesity.

3. WHREDIFIIE

We first collected perigonadal WAT from the mice of the BXD aging colony. These include mice from 4 age
groups, including <264, 265-419, 420-597, 598-785 days. We have applied data-independent acquisition mass
spectrometry (DIA-MS) and computational analysis to precisely quantify proteins from the collected WAT.

In addition to bulk tissue analyses for the BXD mice, we have performed cell type-specific proteomic analysis
for several types of cells in the visceral WAT of C57BL/6N mice under dietary intervention. Specifically, we
established diet-induced obesity (DIO) mouse model and analyzed fluorescence-activated cell sorting (FACS)-
sorted cells from the visceral WAT after 1, 8 and 16 weeks of HFD feeding. Samples from mice under control
diet were analyzed as controls. We quantified control and HFD samples from the same type of cell at each
time point using tandem mass tag (TMT) quantification strategy and then integrated data from the three
time points. Furthermore, we referred to the Network Analysis Toolkit for Multicellular Interactions
(NATMI) database to identify ligands and receptors quantified in our dataset and found autocrine as well as
intercellular ligand-receptor pairs that were significantly regulated by diet.

4. BFFEEE
(1) Proteomics analyses for bulk WAT of 180 mice from the BXD aging colony

We have performed quantitative proteomics analyses for 180 WAT samples from the BXD mice. This
corresponds to 53 mouse strains from the four age groups of the BXD aging colony as mentioned above. Using
the DIA-MS method, we have quantified 4727 proteins across all samples. We did quantitative trait locus
(QTL) analysis for all quantified peptides, and identified 1868 cis peptide QTLs, corresponding to 586
proteins. We got the data recently and we plan to do the following: 1) we will do QTL analysis for samples
from HFD and CD groups of mice respectively, and identify protein QTLs that are regulated by diet; 2) we
will compare the QTL results with published human genome-wide association study (GWAS) data and focus
on metabolic genes. We will look for genes that have significant protein QTLs in mice, whose homologous
genes are associated with metabolic traits in humans.

(2) Cell type- and time-specific proteome profiling for adipose tissue cells under HFD or CD feeding

@ Highly sensitive quantitative proteomics strategy enabled precise protein quantification from limited
number of adipose tissue cells.



The majority of effort in this project was made on analyzing FACS-sorted adipose tissue cells. As the number
of FACS-sorted cells can be very low, it has not been widely used for proteomics analysis. First, we have
developed DIA-MS method to quantify proteins from as low as 17,000 cells (applied elsewhere). At the same
time, we have developed TMT quantification strategy to quantified FACS-sorted cells. This was the strategy
that we used for adipocytes and 4 types of FACS-sorted adipose tissue cells. Specifically, we have quantified
proteome of adipocytes, preadipocytes, macrophages, B cells and T cells from mouse visceral WAT (Figure 1).
We collected cells from mice under 1, 8 and 16 weeks of high-fat or control diet feeding. To increase proteome
coverage, we applied high-pH reversed-phase fractionation (HPRP) for the TMT-labeled peptides, and
performed data-dependent acquisition mass spectrometry (DDA-MS) analysis for each fraction. We then
integrated the results from all fractions from the same cell type at each time point. As a result, we generated
quantitative proteomics data for 5 types of adipose tissue cells at 3 time points, which we used for further
analyses.
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@ Cell type- and time-specific proteome profiling for adipose tissue cells

Interestingly, HFD induced obvious proteome changes from as early as 1 week. For most types of cells, the
proteome changes were time-dependent, while these changes were mostly also cell type-specific (Figure 2).
For example, in adipose tissue macrophages (ATMs), abundances of proteins under the gene ontology (GO)
term “cell cycle” significantly increased in the HFD group compared with the CD group after 1 week feeding,
indicating that adipose tissue resident macrophages may have proliferated within 1 week of HFD feeding
(Figure 2b). However, expression of proteins involved in lipid metabolism, for example, lysosomal acid lipase
(Lipa) and lipoprotein lipase (Lpl), didn’t show significant difference between HFD and CD at 1 week, but
increased after 8 or 16 weeks of HFD feeding. These data indicated that proliferation of ATMs may happen
before metabolic adjustment and/or recruitment of classically activate macrophages to the adipose tissue.
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In addition, we have found a few candidate proteins that may play important roles in development of DIO.
For example, protein expression of chloride intracellular channel protein 4 (Clic4), Sn1-specific diacylglycerol
lipase beta (Daglb) and a cluster of V-type proton ATPase subunits (vATPases) in ATMs significantly
increased after 8 weeks of HFD feeding. We have established ex vivo cell culture system using apoptotic



adipocytes-treated RAW264.7 macrophages. We are validating lipid transport and metabolism in these
macrophages after knockdown of Clic4 expression with small interfering RNAs (siRNAs).

@ Architecture of intercellular communication in adipose tissue

To understand how different types of adipose tissue cells communicate with each other, we referred to the
Network Analysis Toolkit for Multicellular Interactions (NATMI) to identify ligands and receptors quantified
in each cell type 7. NATMI uses connectomeDB2020, which consists of 2293 human ligand-receptor pairs with
primary literature support. In this database, ligands and receptors are recorded only at the gene level but
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not at the protein level, therefore, the
expression values of peptides in the filtered
normalized expression matrices were summed
up per gene for downstream analyses. By
mapping the ligands and receptors in
connectomeDB2020 to their homologous genes
in mice via the NCBI HomoloGene Database 8,
we have identified 197 ligands and 191
receptors out of 7044 quantified proteins
combining all samples.

Figure 3. Number of ligands and receptors
differentially expression between HFD and CD
in each cell type at 1-, 8- and 16-week of
feeding. Blue bar, number of ligands or receptors
significantly decreased in HFD. Orange bar:
number of ligands or receptors significantly
increased in HFD.
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Figure 4. Heatmap of enrichment of GO terms of ligands and receptors up-regulated (a-c) or down-
regulated (d-f) in HFD across five cell types in week 1, 8, and 16. Enriched terms are colored by their p-values
in the corresponding cell type: a darker color represents a smaller p value, and white color indicates the lack of
enrichment for that term in the corresponding cell type. AP: adipocyte. B: B cell. Mac: macrophage. PreAP:
preadipocyte. T: T cell.

We next used edgeR ? to identify differentially expressed genes between samples of two feeding regimens in
each TMT batch. We observed that adipocytes, macrophages and pre-adipocytes all have up- and down-
regulated ligands and receptors across three time points (Figure 3). In contrast, B cells and T cells both have
2 up-regulated ligands in the middle stage and no down-regulated ligands at 16-week. Besides, both B cells
and T cells only have 1 up-regulated receptor around 8 weeks and no down-regulated receptors at 16-week.
It is notable that 1-week HFD feeding has almost no impact on the expression levels of the ligands and
receptors in B cell. Adipocytes, macrophages and preadipocytes all have more down-regulated ligands and
receptors than up-regulated ones upon HFD feeding.

In order to understand the functions of these differentially expressed ligands and receptors, we identified all
statistically enriched terms (which can be GO/KEGG terms, canonical pathways, reactome pathways etc.) of
them using Metacape 10. Using all 675 ligands and 602 receptors in mouse as the background gene set,
Metascape visualized the representative terms with the best p-values of up- and down-regulated signaling
factors in each cell type at each timepoint (Figure 4).

After one-week of HFD feeding, phagosome/phagocytosis process was enriched in all cell types, and the
enrichment was maintained from 1 to 16 weeks of HFD feeding. Interestingly, this activation was observed
in both up- and down-regulated ligands and receptors, indicating that different genes in this process were
regulated in different ways. Further analysis would be required to identify the activated or inhibited genes
in this process. Among the activated terms, adaptive immune system was enriched starting from 8 weeks
until 16 weeks of HFD feeding, but was not enriched at 1 week (Figure 4a-c). By examining the enriched
terms of down-regulated ligands and receptors (Figure 4d-f), we found that positive regulation of cholesterol
efflux was enriched at 1 week but not later time points, indicating an acute response HFD feeding. These
data showed that proteome changes in the analyzed types of cells upon HFD feeding are highly dynamic and
cell type-specific.

In summary, our data have provided unprecedented evidence of the underlying mechanism of how different
types of adipose tissue cells are modulated upon energy excess, and how these cells coordinate to adjust to
microenvironmental changes in the WAT during the development of obesity.
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In collaboration with University of Texas Southwestern Medical Center, we have generated multilayered omics data showing sex- and depot-dependent
adipose progenitor cell heterogeneity. We have constructed a website and made the data freely accessible at http://preadprofiler.us-east-
2.elasticheanstalk.com. Our analyses have provided unprecedented insights into adipose stromal cell heterogeneity and highlight the importance of

complementary proteomics to support findings from scRNA-seq studies.
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