研究成果報告書 科学研究費助成事業

交付決定額(研究期間全体):(直接経費) 3.500.000円

研究成果の概要(和文): 大腸菌のDNA修復タンパク質である非六量体型へリカーゼUvrDについて、単量体モ デルが提唱された研究で用いられた変異体が野生型UvrDと同様に多分子でおそらく多量体を形成してDNAを巻き 戻していること、およびDNA巻き戻し活性が高いUvrD変異体のDNA結合分子数が野生型UvrDよりも多いことを、蛍 光1分子イメージングによって明らかにした。

また、DNA巻き戻しの1塩基分解能観察を目指してDNA基質を作製し蛍光1分子イメージングを行ったほか、高濃 度蛍光性リガンド存在下で蛍光1分子イメージングが可能なゼロモード導波路を用いてUvrDのATP結合・解離過程 の1分子可視化に取り組んだ。

研究成果の学術的意義や社会的意義 酵素や受容体など多くのタンパク質で見られる多量体形成は、タンパク質の活性制御、構造安定性の増大な ど、その機能や構造に重要な役割を果たす。一方、タンパク質複合体のダイナミクスに迫るのが困難なこともあ り、タンパク質間の相互作用や多量体形成と機能の関係については不明な点が多く残されている。 本研究では、多量体形成がDNA巻き戻し機能に重要な役割を果たしている大腸菌のDNA修復タンパク質へリカー ゼUvrDに注目した。そして、生体1分子間の相互作用を観察できる蛍光1分子イメージングにより、そのDNA上で の多量体形成・DNA巻き戻し機能・ATP加水分解エネルギーの化学力学共役機構の相関関係に迫った。

研究成果の概要(英文): Single-molecule visualization was performed for the non-hexameric superfamily 1 helicase UvrD protein, which plays a crucial role in DNA repair in E. coli. Superfamily Therease out protein, which prays a crucial fore in DNA repair in E. corr. Single-molecule direct visualization of the C-terminal 40 amino acid deletion mutant UvrD 40C, which was used in studies that proposed the monomeric model for DNA unwinding, revealed that two or three UvrD 40C molecules were simultaneously involved in DNA unwinding, possibly in an oligomeric form, similar to that with wild-type UvrD. On the other hand, single-molecule direct visualization of a UvrD mutant that exhibits enhanced DNA unwinding activity revealed that the number of the mutant bound to DNA was higher than that of wild-type UvrD.

In addition, to visualize DNA unwinding by UvrD with single-nucleotide resolution, a DNA substrate for the visualization was prepared, and the visualization was tested. Moreover, using zero-mode waveguides, attempts were made to visualize association/dissociation of ATP with/from UvrD.

研究分野: 生物物理学

キーワード: 1分子計測 ナノバイオ 核酸 酵素反応

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

(1) 酵素、イオンチャネル、受容体、転写因子など多くのタンパク質で見られる多量体形成は、 タンパク質の活性制御、構造安定性の増大など、機能・構造に重要な役割を果たす。細胞内のタ ンパク質の35%以上が二量体を含む多量体の状態で存在しているとの報告がある」。多量体形成 は種の遺伝的連続性を保証する最も重要な機構である DNA 複製・修復・組換えで機能する様々 なタンパク質分子にもあてはまる。これまでこれらの機構に関与する数々のタンパク質の同定 と構造解析がなされ、詳細な生化学的解析に基づいて反応機構のモデルが提唱されてきた。しか しこれらのタンパク質が機能する多数のサブユニットからなる複合体の3次元構造を解くのが 困難なこともあり、タンパク質の相互作用や多量体形成と機能の関係については不明な点が多 く残されている。

(2) ヘリカーゼは、ヌクレオチドの加水分解エネルギーを用いて二本鎖核酸を一本鎖核酸に巻き 戻す酵素である。ヘリカーゼは DNA 複製・修復・組換え全ての機構に関与し、原核生物から真 核生物まで高度に保存されており、1 次構造で高度に保存されている 7 つのモチーフから 6 つの スーパーファミリーに分類される。このうちスーパーファミリー1、2 のヘリカーゼは非六量体 で機能することが知られている。本研究では、大腸菌の DNA 修復で損傷部位を切り出す役割を 果たす非六量体型スーパーファミリー1 ヘリカーゼ UvrD (720 アミノ酸・分子量 82 kDa)をタ ーゲットとする。UvrD は一本鎖/二本鎖 DNA ジャンクションに高いアフィニティで結合し、ATP 加水分解のエネルギーを用いて 3' 5'方向に二本鎖 DNA をほどいて一本鎖 DNA にする活性を もつ。

(3) DNA 巻き戻し時の機能単位に関しては、ほかの非六量体型ヘリカーゼと同様に UvrD につい ても単量体モデルと多量体モデルが提唱されてきた。ヘリカーゼの機能発現には C 末端のアミ ノ酸が重要であるとの報告がある²。UvrD については、旧来のゲル濾過による解析から、C 末端 40 アミノ酸欠失変異体 UvrDΔ40C が二量体を形成できないことと、二量体を形成できないにも かかわらず DNA 巻き戻し活性があることが報告され、単量体モデルが提唱された³。同じく単 量体モデルを提唱した X 線結晶構造は実はこの変異体を用いている⁴。多量体モデルは、シング ルターンオーバーDNA 巻き戻しアッセイで[UvrD]/[DNA]が 2 以上の条件で DNA が効率的に巻 き戻されることから提唱された⁵。また、スーパーファミリー1 ヘリカーゼを構成する 4 つのサ ブドメイン(1A、1B、2A、2B)のうちの 2B サブドメインを変異させた変異体は野生型に比べ て 10 倍以上高い DNA 巻き戻し活性があることが報告されている⁶。一本鎖 / 二本鎖 DNA ジャ ンクションをアンカーしている 2B サブドメインに加えたこの変異は、UvrD の DNA への結合を より強固にするとされており、UvrD の DNA 巻き戻し機能を理解する上で重要である。

(4)研究代表者らは DNA 巻き戻し時の機能単位を UvrD の蛍光 1 分子直視の実現によって明ら かにするため、まずその障害となるガラス基板上へのタンパク質の非特異吸着を従来法より 1/10 に抑制する表面コーティング法を開発した⁷。そして野生型 UvrD と DNA の巻き戻しを同時に 1 分子イメージングし、その蛍光強度の段階数から UvrD が単量体ではなく二量体あるいは三量 体の多量体を形成し効率的に DNA を巻き戻していることを明らかにした⁸。さらに、未知であ った UvrD - DNA 間の 1 分子結合・解離ダイナミクスを詳細に解明し、その結合・解離定数を得 た。これはヘリカーゼの分子数を 1 分子定量した初めての研究である。

(5) DNA 巻き戻しと ATP 加水分解エネルギーの間の化学力学共役機構については、いくつかの 非六量体型ヘリカーゼで1 bp/ATP が提唱されているが、みかけのエネルギー変換効率は10%程 度と低い。UvrD については報告がなく不明のままである。ヘリカーゼを含む DNA 結合タンパ ク質は ATP との結合アフィニティが一般的に低いため、蛍光性 ATP1 分子との相互作用の観察 が困難で報告されておらず、現状では化学力学共役機構に決定的な答えがない。なお、研究代表 者らは高濃度条件下(数μM)で蛍光1分子イメージングができるゼロモード導波路(直径100 nm のナノ開口アレイ)を使い、全反射照明では蛍光1分子イメージングが不可能な高濃度の蛍 光性リガンド存在下で、蛍光1分子イメージングを行ってきた⁹。

2.研究の目的

(1) 本研究では、大腸菌の DNA 修復で損傷部位を切り出す役割を果たす非六量体型スーパーフ ァミリー1 ヘリカーゼ UvrD の DNA 上での多量体形成・DNA 巻き戻し機能・ATP 加水分解エネ ルギーの化学力学共役機構の相関関係を、UvrD・DNA・ATP を蛍光 1 分子イメージングするこ とで明らかにすることを目的とした。 3 . 研究の方法

(1) 蛍光1分子イメージングのためのタンパク質の蛍光標識:高精度1分子解析を達成するためには、観察される蛍光1分子の輝点がタンパク質1分子に対応していることが望ましい。このため、遺伝子工学で蛍光標識サイトが単一の変異体を作製し、発現・精製した変異体を蛍光標識することで、高標識率の部位特異的蛍光標識を行った。

(2) DNA 基質の作製:本研究で用いる2種類のDNA 基質を、複数のオリゴヌクレオチドをアニールやライゲーションすることで作製した。

(3) UvrD の蛍光1分子イメージング: 蛍光1分子イメージング計測顕微鏡を用いて、DNA と相 互作用する UvrD を1分子直視した。

(4) DNA 巻き戻しの1塩基分解能観察を目指した蛍光1分子イメージング:作製した DNA 基質 を用いて DNA 巻き戻しの1塩基分解能観察を目指した蛍光1分子イメージングを行った。

(5) ゼロモード導波路を用いた蛍光1分子イメージング:ゼロモード導波路用の貫流系の開発を 通して、全反射照明では蛍光1分子イメージングが不可能な高濃度の蛍光性 ATP を蛍光1分子 イメージングした。

4.研究成果

(1) 蛍光1分子イメージングのためのタンパク質の蛍光標識:野生型 UvrD にある6つの Cys 残 基のうちの1つのみを残した変異体を遺伝子工学で作製した。そして、この単一 Cys 残基変異 体を発現・精製し、Cys 残基を特異的に標識する官能基(マレイミド基)をもつ蛍光色素 Cy5 で 蛍光標識することで、高標識率の部位特異的蛍光標識を行った。

(2) DNA 基質の作製:以下の2種類の DNA 基質を作製した。

研究代表者が野生型 UvrD の蛍光 1 分子直視⁸ に用いたものと同様の DNA 基質を、2 種類の オリゴヌクレオチドをアニールすることにより作製した 20 ヌクレオチドの 3'一本鎖 DNA 突 出をもつ二本鎖 DNA (18 bp)を用いた。2 種類のオリゴヌクレオチドの一方の末端にはガラス 基板固定のためにビオチンを、もう一方の末端には Cy3 を標識したものを用いた。

DNA 巻き戻しの1 塩基分解能観察のための DNA 基質を、複数のオリゴヌクレオチドをアニ ール・ライゲーションすることで作製した。

(3) C 末端 40 アミノ酸欠失変異体 UvrDム40C の蛍光1 分子イメージング

単量体モデルが提唱された研究で用いられた UvrDΔ40C は二量体を形成できないとされる。 そこで UvrDΔ40C が多量体を形成できるかどうかに迫るため、20 ヌクレオチドの3 '一本鎖 DNA 突出をもつ二本鎖 DNA (18 bp) との相互作用を蛍光 1 分子イメージングした¹⁰ (図 1、2)。

図1 ヌクレオチド非存在下での UvrDム40C の蛍光1分子イメージング.(A)実験模式図.(B) Cy5 の1段階褪色が見られた典型的な蛍光強度時間変化.(C) Cy5 の2段階褪色が見られた 典型的な蛍光強度時間変化データ.文献(10)より出版元の許可を得て引用.

図 2 ATPS 存在下での UvrDΔ40C の蛍光 1 分子イメージング .(A)実験模式図 .(B)Cy5 の 1 段 階褪色が見られた典型的な蛍光強度時間変化データ .(C) Cy5 の 2 段階褪色が見られた典型 的な蛍光強度時間変化データ .(D) Cy5 の 3 段階褪色が見られた典型的な蛍光強度時間変化 データ .文献(10)より出版元の許可を得て引用 .

UvrD Δ 40CのDNAへの結合分子数は、UvrD Δ 40Cに標識したCy5の蛍光の褪色の段階数から見 積もった。褪色段階数のヒストグラムとUvrD Δ 40Cに標識したCy5の蛍光標識率から結合分子 数を見積もったところ、ヌクレオチド非存在下では2分子のUvrD Δ 40Cが、ATP γ S存在下では3 分子のUvrD Δ 40CがDNAに結合できることがわかった。なおATP γ Sの存在による結合分子数 の増加は、野生型UvrDでも見られている。

次に、ATP 存在下 DNA 巻き戻し時の 蛍光1 分子イメージングを行った。 UvrD∆40Cの DNA への結合分子数は、 UvrD∆40C に標識した Cy5 の蛍光強度に よって、DNA 巻き戻しの完了は DNA 基 質を構成している Cv3 を標識したオリ ゴヌクレオチドの解離にともなう蛍光 の消失によって検出した。UvrD 40Cの 場合も野生型 UvrD と同様に、Cy5 の蛍 光強度が2 段階で上昇した直後に、Cy3 と Cv5 の蛍光強度が同時に減少するデ ータが得られた¹⁰(図3B)。このデータ は、2 分子目の UvrD の DNA への結合直 後に DNA 巻き戻しが速やかに完了して いることを示しいる。また、UvrD 40C 3 分子が DNA 巻き戻しに関わったこと を示すデータも得た(図3C)。本研究結 果により、UvrD 40C の DNA 巻き戻し についても、従来提唱されてきた1分子

直前に Cy5 の蛍光強度変化が2 段階であった典型 的な蛍光強度時間変化 .(C) DNA 巻き戻し完了直後 に Cy5 の蛍光強度が3 段階であった典型的な蛍光 強度時間変化.文献(10)より出版元の許可を得て引 用、一部改変.

(単量体)モデルでは説明できないことが明らかとなった。

さらに、UvrD 40CのDNA 結合・解離のダイナミクスについて、野生型 UvrD と同様の解析 を行った¹⁰。図 4A に UvrD 40C が 2 分子まで関わる各反応ステップの滞留時間の分布 (DNA 巻き戻し完了直前は除く)と、その分布の指数関数フィッティングにより得られた速度定数を示 す。得られた結合・解離速度定数を野生型 UvrD のものと比較したところ(図 4B) 1 分子目の

結合・解離速度定数 (k1、k-1)は同等だっ たのに

対し、

2

分子目 結合・解離速度定数 (*k*₂、*k*₋₂)は、 UvrD∆40C のほうが 約2.5倍大きいことが わかった。この結果 は、C末端アミノ酸欠 失が 1 分子目ではな く2 分子目の UvrD の DNA 結合・解離に影 響を与えていること を示しており、二量体 を形成しにくい UvrD∆40C の性質を 表しているものと考 えられる。

図 4 UvrD - DNA 相互作用の結合・解離速度定数.(A) UvrD 40C が 2 分子まで関わる結合・解離反応の滞留時間(DNA 巻き戻し完了直前は 除く)の分布.結合・解離速度定数は指数関数フィッティングによっ て求めた.k₁ と k₂ は 2 nM UvrD 40C 条件下の値.(B)k_{on(obs})は 2 nM UvrD 40C 条件下の値.文献(10)より出版元の許可を得て引用、一部 改変.

研究代表者は、18 bp の二本鎖 DNA を巻き戻すのに最小限必要な一本鎖突出部の長さ(12 ヌ クレオチド)をもつ DNA を用いても、2 あるいは 3 分子の UvrD 40C が DNA 巻き戻し完了直 前に結合していることを明らかにしている¹⁰。この結果と、一本鎖/二本鎖 DNA ジャンクション に高いアフィニティをもつ UvrD は二本鎖 DNA ではなく一本鎖 DNA に結合すること、UvrD は 1 分子あたり 10 ヌクレオチド程度以上の一本鎖 DNA を占有することと合わせると、DNA 巻き 戻し完了直前に DNA に結合した 2 あるいは 3 分子の UvrD 40C は、一本鎖 DNA 上で互いに相 互作用し多量体を形成していると考えられる。

(4) 高い DNA 巻き戻し活性を示す UvrD 変異体の蛍光 1 分子イメージング

2B サブドメインのアミノ酸を変異させた高い DNA 巻き戻し活性を示す UvrD についても蛍 光1分子イメージングを行った。野生型 UvrD および UvrD∆40C の場合と同様に、20 ヌクレオ チドの3' 一本鎖 DNA 突出をもつ二本鎖 DNA (18 bp)との相互作用を蛍光1分子イメージン グし、UvrD の DNA への結合分子数は、UvrD 変異体に標識した Cy5 の蛍光の褪色の段階数から 見積もった。褪色段階数のヒストグラムとこの UvrD 変異体に標識した Cy5 の蛍光標識率から 結合分子数を見積もったところ、ヌクレオチド非存在下では3分子の UvrD 変異体が、ATPγS 存 在下では4分子の UvrD 変異体が DNA に結合できることがわかった。前述したが、ATPγS の存 在による結合分子数の増加は、野生型 UvrD や UvrDΔ40C でも見られている。これら見積もられ た DNA 結合分子数は野生型 UvrD よりも大きく、この UvrD 変異体の DNA への高い親和性を示 すものと考えらえる。

次に、ATP存在下で DNA 巻き戻し時の蛍光 1 分子イメージングを行った。野生型 UvrD および UvrD40C の場合と同様に、DNA への結合分子数は UvrD 変異体に標識した Cy5 の蛍光強度によって、DNA 巻き戻しの完了は、DNA 基質を構成している Cy3 を標識したオリゴヌクレオチドの解離にともなう蛍光の消失によって検出した。この UvrD 変異体の場合も、野生型 UvrD および UvrD40C と同様に、Cy5 の蛍光強度が複数段階で上昇した直後に、Cy3 と Cy5 の蛍光強度が同時に減少するデータが得られた。得られたデータを元に DNA 結合・解離のダイナミクス について解析を続けている。

(5) DNA 巻き戻しの1塩基分解能観察を目指した蛍光1分子イメージング

作製した DNA 基質を用いて DNA 巻き戻しの 1 塩基分解能観察を目指した蛍光 1 分子イメージングを行った(図5)。 DNA 巻き戻しに対応していると思われる階段状の FRET 効率変化を観察した。得られたデータの解析を続けている。

(6) ゼロモード導波路を用いた蛍光1分子イメージング

ゼロモード導波路用の貫流系の開発を通して、蛍光 1 分子イメージング光学系へのゼロモー ド導波路の導入し、蛍光性 ATP の蛍光 1 分子イメージングを行った (図 6)。

< 引用文献 >

(1) Goodsell, D. S., Olson, A. J. Structural symmetry and protein function. *Annu. Rev. Biophys. Biomol. Struct.* **29**, 105-153 (2000).

(2) Mechanic, L. E., Latta, M. E., Matson, S. W. A region near the C-terminal end of *Escherichia coli* DNA helicase II is required for single-stranded DNA binding. *J. Bacteriol.* **181**, 2519-2526 (1999).

(3) Mechanic, L. E., Hall, M. C., Matson, S. W. *Escherichia coli* DNA helicase II is active as a monomer. *J. Biol. Chem.* **274**, 12488-12498 (1999).

(4) Lee, J. Y., Yang, W. UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke. *Cell* **127**, 1349-1360 (2006).

(5) Maluf, N. K., Fischer, C. J., Lohman, T. M. A dimer of *Escherichia coli* UvrD is the active form of the helicase *in vitro*. *J. Mol. Biol.* **325**, 913-935 (2003).

(6) Meiners, M. J., Tahmaseb, K., Matson, S. W. The UvrD303 hyper-helicase exhibits increased processivity. J. Biol. Chem. 289, 17100-17110 (2014).

(7) Yokota, H., Han, Y. W., Allemand, J.-F., Xi, X. G., Bensimon, D., Croquette, V., Harada, Y. Single-molecule visualization of binding modes of helicase to DNA on PEGylated surfaces. *Chem. Lett.* **38**, 308-309 (2009).

(8) Yokota, H., Chujo, Y. A., Harada, Y. Single-molecule imaging of the oligomer formation of the nonhexameric *Escherichia coli* UvrD helicase. *Biophys. J.* **104**, 924-933 (2013).

(9) Iwasa, T., Han, Y. W., Hiramatsu, R., Yokota, H., Nakao, K., Yokokawa, R., Ono, T., Harada, Y. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. *Sci. Rep.* **5**, 18177 (2015).

(10) Yokota, H. DNA-unwinding dynamics of *Escherichia coli* UvrD lacking the C-terminal 40 amino acids. *Biophys. J.* **118**, 1634-1648 (2020).

5 . 主な発表論文等

〔雑誌論文〕 計6件(うち査読付論文 6件/うち国際共著 0件/うちオープンアクセス 5件)

1. 著者名	4.巻
Hiroaki Yokota	1864
2. 論文標題	5 . 発行年
Fluorescence microscopy for visualizing single-molecule protein dynamics	2020年
3. 雑誌名	6.最初と最後の頁
Biochimica et Biophysica Acta (BBA) – General Subjects	129362 ~ 129362
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.bbagen.2019.05.005	有
	-
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Hiroaki Yokota	118
2 . 論文標題	5 . 発行年
DNA-Unwinding Dynamics of Escherichia coli UvrD Lacking the C-Terminal 40 Amino Acids	2020年
3.雑誌名	6.最初と最後の頁
Biophysical Journal	1634~1648
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1016/j.bpj.2020.02.014	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	

1.著者名	4.巻
Hiroaki Yokota	22
2.論文標題	5 . 発行年
Roles of the C-Terminal Amino Acids of Non-Hexameric Helicases: Insights from Escherichia coli	2021年
UvrD	
3. 雑誌名	6.最初と最後の頁
International Journal of Molecular Sciences	1018 ~ 1018
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.3390/ijms22031018	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
横田 浩章	61
2.論文標題	5 . 発行年
1分子観察から見えてきた大腸菌ヘリカーゼUvrDのDNA巻き戻し機能と多量体形成	2021年
3. 雑誌名	6.最初と最後の頁
生物物理	227 ~ 231
	-
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.2142/biophys.61.227	
······································	13
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
Hiroaki Yokota	19
2.論文標題	5.発行年
Quantitative and kinetic single-molecule analysis of DNA unwinding by Escherichia coli UvrD	2022年
helicase	
3、维赫谷	6.最初と最後の貝
Biophysics and Physicobiology	e190006_1 ~ 16
掲載論文のD01(デジタルオブジェクト識別子)	 _ 査読の有無
10 2/42/b in physical bandwide (10,000)	「「「」」につう「「」」」
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-
〔学会発表〕 計9件(うち招待講演 4件/うち国際学会 1件)	
1. 発表者名	
横田 浩章	
2. 発表標題	
Single-molecule imaging of the oligomeric form of the non-hexameric Escherichia coli helicase U	JvrD mutants
2 *****	
3.子云寺右 	
第56回日本生物物理子会年会	
4 · 无农中 	
2010+	
1	
2. 発表標題	
大腸菌非六量体型DNAヘリカーゼUvrD変異体の1分子イメージング	
第41回日本分子生物字会年会(招待講演)	
4. 无衣中	
2018年	
1 及主本ク	
2. 発表標題	
生体分子1分子の蛍光イメージングと蛍光検出~1分子直視と高時間分解能検出~	
3.学会等名	
第15回バイオオプティクス研究会(招待講演)	

4 . 発表年 2018年

. 発表者名 1 横田 浩章

2.発表標題

Single-molecule imaging of a non-hexameric Escherichia coli helicase UvrD mutant lacking C-terminal residues

3.学会等名 第57回日本生物物理学会年会(招待講演)

4.発表年 2019年

1.発表者名 横田 浩章

2.発表標題

生体分子1 分子の蛍光イメージング~DNA結合タンパク質の1 分子直視~

3 . 学会等名

第16回バイオオプティクス研究会(招待講演)

4.発表年 2019年

1.発表者名

Hiroaki Yokota

2.発表標題

DNA-unwinding dynamics of Escherichia col UvrD lacking the C-terminal 40 amino acids

3 . 学会等名

第58回日本生物物理学会年会

4 . 発表年 2020年

1.発表者名 Hiroaki Yokota

2.発表標題

DNA-unwinding dynamics of Escherichia coli UvrD lacking the C-terminal 40 amino acids

3 . 学会等名

第43回日本分子生物学会年会

4 . 発表年 2020年

1.発表者名

Hiroaki Yokota

2 . 発表標題

DNA-unwinding dynamics of Escherichia coli UvrD lacking the C-terminal 40 amino acids

3 . 学会等名

Biophysical Society 65th Annual Meeting(国際学会)

4 . 発表年 2021年

1.発表者名 Hiroaki Yokota

2.発表標題

DNA-unwinding dynamics of Escherichia coli UvrD lacking C-terminal amino acids

3 . 学会等名

第59回日本生物物理学会年会

4.発表年

2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

光産業創成大学院大学バイオフォトニクスデザイン分野ホームページ https://www.gpi.ac.jp/research/bpxd/professor-15/

6.研究組織

氏名 所属研究機関・部局・職 (ローマ字氏名) (機関番号)	備考

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況