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Quantum phase transitions at extremely low temperatures determine physical properties at higher
temperatures. The detailed understanding of the quantum solid-to-liquid crystal phase transition
allows for more control of various helium states, and impact superfluidity and superconductivity
research.

Laboratory experiments can deposit helium atoms on graphite substrates with
extreme control, and are able to form perfect layers with controllable density, in the
low-temperature, quantum regime. These experiments show there may exist a state of planar matter
between a solid and a liquid, akin to a liquid crystal. The latter is characterized by preferred
directions unlike a featureless liquid. As determining the nature of this state directly is
difficult, one may instead obtain information about the transition from the solid to the potentially

new, liquid-crystalline state.

To compare with future experimental results, we have studied this quantum phase transition with
theoretical methods. In particular, using a duality mapping where lattice vibrations (phonons) are
represented as forces ggauge fields), we used the functional renormalization group to determine that
this transition should be continuous (second-order). Many avenues for future study have been
identified.
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At zero temperature, different phases of matter are separated by quantum phase transtions. While real-world systems
always have afinite temperature, their properties are often dominated by the existence of a quantum phase transition
in the zero-temperature limit. In this context, phases of helium atoms have been studied in great detail, both in bulk
and layered form. Helium atoms can be deposited on graphite substrate under precise control, which lead to the
formation of both commensurate and incommensurate layers with highly tunable density. At high density, these layers
form atwo-dimensional quantum solid, and at low density, the atoms move around freely like in aliquit.

In arecent report, several intermediate phases were identified both in Helium-4 and Helium-3 [Nakamura et al. Phys.
Rev. B 94 180501(R) (2016)]. One of these phases shows some characteristiscs of the so-called quantum hexatic
phase, that is a quantum state of matter with the symmetry properties of a hexatic liquid crystal. However, it is
experimentally very difficult to directly probe the nature of thisintermediate phase, although expensive neutron
scattering experiments could perhaps yield some information.

Independent of this experimental effort, A. Beekman and coworkers have developped a general quantum field theory
description of quantum liquid crystals as the result of the quantum dislocation-mediated melting of solids. Here a
duality mapping represents the dislocation topological defects as charged particles, which interact by exchanging
gauge fields that take the role of the phonons. In thissense aliquid crystal isa “  stress superconductor” : the
transverse stress, that is supported in a solid, decays exponentially quickly in aliquid crystal. This effective field
theory, based solely on the symmetries of the respective phases, can be employed to perform cal culations about the
guantum phase transition between quantum solid and quantum liquid crystal.

Instead of studying the intermediate helium phase directly, which is difficult and costly, experimentalists should focus
on the quantum phase transition itself, and determine critical properties such as the critical exponents of specific heat.
These exponents are universal, insensitive to experimental imperfections, and depend only on the symmetry
properties of the phase transition. To be able to identify the nature of the phase transition, the present research aimsto
calculate the critical exponents of the two-dimensional quantum solid-to-liquid crystal phase transition.

Using the effective field theory for quantum liquid crystals, renormalization group calculations were carried out for
the simplest case possible: dislocation condensation in the two planar directions, without the further complication of
the so-called glide constraint, which governs dislocation dynamics. The technical difficulty here isthat, in the dual
picture, the condensates couple to gauge fields (here: the phonons), and these interactions are notorioudly difficult to
incorporate in the renormalization group. We used a recent development by G. Fejos and T. Hatsuda, who devel opped
amethod to consistently calculate a single condensate to a single gauge field in three dimensions (an ordinary
superconductor) [Phys. Rev. D 93, 121701(R) (2016), Phys. Rev. D 96, 056018 (2017)]. In the present research we
extend this to two condensates (restoring translation symmetry in the two planar directions) coupled to two gauge
fields (phonons), with tunable condensate-condensate coupling. In thisformalism it is easy to consider general
N-component condensates, where our target situation corresponds to N=2. The general situation allows for
comparison with other methods.

A numerical study of the same problem was also envisaged, but due to unforeseen complications even in the
analytical calculation, this was not brought to fruition within this project.

We have succesfully carried out the functional renormalization group calculation for the two N-component
condensate coupled to two vector gauge fields situation. The result, the structure of the critical points as function of
three parameters: the condensate strength A , the inter-condensate coupling g, and the gauge field coupling €, is
pictured in Figure 1. The situation without gauge fields (corresponding to a binary superfluid) is the horizontal plane
at €2 = 0, and has two stable fixed points. One fixed point is at g=0, and represents the uncoupled case where both
fields condense at the same time. The for the fixed point at g>0, only one field condenses due to
condensate-condensate repulsion. The flow diagram indicates that any finite gauge coupling (e? > 0), the stable fixed
points are at afinite, critical value €2 = €. Again there are two stable fixed points: theoneat g=0 corresponds to
both fields condensing. This isthe case of the hexatic liquid crystal, where trandation symmetry is restored in both
directions. At the stable fixed point at g>0, only one field condenses; this represents a smectic liquid crystal where
only one field condenses, and translation symmetry is restored in only one direction.

From the renormalization group literature, it is known that these charged fixed points (at €2 > 0) are second-order



phase transitions. We have therefore provided evidence that, in sofar this ssmplied model characterizes the helium
experiments, the solid-to-hexatic quantum phase transition is a second-order phase transition. In this simplified model
the phase transition isin the U(1)- or 3DXY-universality class.

Theincorporation of the glide constraint, which states that dislocations can only move in the direction of their
Burgers vector, is not expected to alter this conclusion. As it does remove one soft degree of freedom, it may have
influence on the corrections to the critical exponent.
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Figure 1: Flow diagram of the two-condensate moddl as function of condensate strength A , the inter-condensate
coupling g, and the gauge field coupling €. The existence of charged stable fixed points shows the phase transition is

second-order.



During the course of this research project, we have identified several interesting avenues for future investigations.
Here are some pointers for both theoretical and experimental researchers:

1.

Two parts of the proposed research project were not realized, and should be taken up. First, the effective
field theory was simplified in two respects: the glide constraint was omitted, and longitudinal and transverse
phonons were taken to have the same velocity. These should be incorporated in the model, and we expect
thiswill not change the second-order nature of the phase transition, but may affect the critical exponents.
Similarly, the critical exponents have not been calculated so far, while thisinformation isimplicit in the FRG
results.

Second, it is useful to study the same problem numerically, for instance by Monte-Carlo simulations of
dislocation worldlines.

Experimentalists studying quantum states of matter should also focus their efforts on the critical properties
of the quantum phase transition. Due to the fact that the phase transition depends on external parameters like
density, while its effects also persist at finite temperatures, there is a wealth of observables available which
are dl scale-invariant, and hence al have their critical exponents. In turn al these critical exponents are
related to each other, and expressed in terms of only two, called n and v . These quantum critical
exponents and their relations are explored by Kirkpatrick and Belitz [Phys. Rev. B 91, 214407 (2015)].

In our view, some of these exponents should be relatively easy to measure. For the present sitaution, we urge
experimentalists to measure the specific heat as function of temperature, right at the critical density between
solid and potential-hexatic phases.

The effective field theory of quantum liquid crystals that was used in this project has a peculiar property: a
quantum solid that loses it transverse rigidiy, i.e. the quatum liquid-crystalline phase, is automatically a
superfluid, or a superconductor in the charged case. Indeed one can explictly calculate the Meissner effect.
The surprising thing is that this occurs even without the condensation of a bosonic particle field. The reason
is that the conservation of particle number, which is the symmetry that is broken in the superfluid, is present
in the dislocation condensation via the glide constraint.

Thisis contrast to several other studies, that argue that quantum melting and superfluidity are two separate
issues. As such, it would be possible to have two separate phase transitions, and a quantum hexatic phase
without superfluidity may exist. It isindeed possible that our effective field theory only describes one limit
of the full phase diagram; and this should be related to the fact that we do not allow for disclination
excitations, which are on adeep level also related to particle conservation. This issue should be researched
further. Experimentalists should try to see whether there are two seperate phase transtions, corresponding to
hexatic phases with or without superfluidity.

Although the quantum phase transition in two dimensions has a three-dimensional universality class, itis
also interesting to study the two-dimensional universality. Here, even the ordinary superconductor (one
condensate coupled to one gauge field) may show some surprises. In the neutral case, without gauge fields,
the M ermin-Wagner-Hohenberg-Coleman theorem prevents long-range order in two dimensions, and one
has the Berezinskii-K osterlitz-Thouless phase transition to a state with algebraic long-range order. Thisis
due to the interplay between vortex interaction and vortex entropy, both of which depend logarithmically on
system size.

However, with gauge fields, there is no soft mode and no infrared divergence which prevents atrue
long-range ordered state in two-dimensions. On the other hand vortex-vortex interactions are short-ranged,
so that entropy always dominates for large systems, and the phase transition is pushed to lower and lower
temperatures for smaller sizes. So the paradoxical situation isthat, naively, even though long-range order is
not prohibited, it does not occur at finite temperatures.

In real-world two-dimensional superconductors, this whole debate is circumvented as the gauge fields
(electromagnetic fields) actually exist in the the third dimension as well, which causes the effective London
penetration depth do diverge. Therefore, two-dimensional superconductors behave as two-dimensional
superfluids, with a BKT transition, for its non-electronic properties.

The question what happensin a true two-dimensional superconductor, with two-dimensional gauge fields,
remains open. Will the critical point indeed be pushed to zero temperature, or does long-range order exists at
some low temperature range? It is worthwhile to study this with renormalization group methods as well as
numerical simulations. Experimentally, the situation could perhaps be researched by supressing gauge fields
in the third dimension, for instance by shielding the planar sample by short-coherence length
superconductors. Perhaps even anal ogous systems like one-dimensional quantum liquid crystals can be used
to study this universality class.
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