科学研究費補助金研究成果報告書

平成 21 年 5月 18 日現在

研究種目:基盤研究(B)				
研究期間:2007-2008				
課題番号:19300105				
研究課題名(和文)線条体ニューロン-グリアネットワークにおける自発活動の計測・解析と				
研究課題名(英文)Recording, analyzing, and modeling of the spontaneous activities in the striatal neuron-glia network				
研究代表者 小山内 実 (OSANAI MAKOTO) 大阪大学・大学院工学研究科・講師 研究者番号: 90286419				

研究成果の概要: 大脳基底核線条体における自発 Ca^{2+} 振動の、特徴、神経回路における情報処理への関与、を解明することを目指し、以下の点を明らかにした。(1)ニューロン、グリアの双方で、活動電位依存の Ca^{2+} 変化と比べるとはるかに持続時間の長い、自発 Ca^{2+} 振動が 観測された。(2)ニューロンにおける自発 Ca^{2+} 振動は、グリアと比較して、振幅、持続時間、 立ち上がり・減衰の傾き、それぞれ大きい値を持つものが多いことが判明した。(3) 活動電位 を人為的に阻害した結果、ニューロンにおける自発 Ca^{2+} 振動の特徴は変化したが、グリアで は変化が見られなかった。これらの結果は、持続時間の長い Ca^{2+} 変動が、神経回路における 情報処理に関与していることを示唆している。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	9, 400, 000	2, 820, 000	12, 220, 000
2008 年度	5, 400, 000	1, 620, 000	7, 020, 000
年度			
年度			
年度			
総計	14, 800, 000	4, 440, 000	19, 240, 000

研究分野:総合領域

科研費の分科・細目:情報学・生体生命情報学

キーワード:生体情報、脳・神経、神経回路、自発活動、カルシウムイメージング、大脳基底 核

1. 研究開始当初の背景

カルシウムイオン (Ca²⁺) は、細胞内情報伝 達の重要なメッセンジャーであるだけでな く、神経活動に伴いその細胞内濃度が上昇す ることが知られている (Berridge et al., Nat. Rev. Mol. Cell Biol. 1: 11-21, 2000 など)。近年、Ca²⁺ イメージング法を用いて、 神経細胞の自発活動 (ゆらぎ) に関する研 究が盛んに行われるようになってきた (Smetters et al., Methods 18: 215-221, 1999; Ikegaya et al., Science 304: 559-564,

2004 など)。旧来の考え方では、神経回路に おける自発活動は単なるノイズとみなされ ていたが、自発活動は脳の信号伝播の特徴を 示す良い指標であるというだけでなく、脳の 内部状態を示しているとの考え方が主流に なりつつある (Destexhe, Contreras, Science 314: 85-90, 2006 など)。この内部 状態の違いは、神経ネットワークにおける入 出力関係を変化させていることが示唆され ており、脳の自発活動は情報処理に大きく関 わっていると思われる。 近年、グリア細胞が神経ネットワークにおける情報処理に深く関与していると言われているが (Newman, Trends Neurosci. 26:536-542,2003)、グリア細胞 (特にアストロサイト) における自発 Ca^{2+} 濃度変化 (Ca^{2+} 振動)が、ニューロン-グリア相互作用に深く関与しているという報告がある (Zonta, Carmignoto, J. Physiol. Paris 96:193-198,2002; Braet et al., Biol. Cell 96:79-91,2004)。しかし、ニューロン-グリア双方の Ca^{2+} 振動が、どのような機構で発生し、どのような情報処理に関与しているのかを明確に示した例はない。

大脳基底核線条体は、皮質から投射を受ける 基底核の信号入力部である。この線条体は運 動制御、報酬予測(強化学習)などに関与し ていると言われており、さらにはパーキンソ ン病の病因部位であることが知られている (Graybiel, Curr. Opin. Neurobiol. 5: 733-741, 1995; Chesselet, Delfs, Trends Neurosci. 19: 417-422, 1996; Samejima et al., Science 310, 1337-1340, 2005 など)。 しかし、その情報処理機構については解明さ れていない点が多く残されている。

研究代表者は、この大脳基底核線条体におい て、旧来の神経活動の概念と比べるとはるか に長い時間スケールを持つ自発 Ca²⁺ 振動 (持続時間:数秒から数百秒)を初めて発見 している (Osanai et al., Neurosci. Res. 50(Suppl. 1): S54, 2004; Osanai et al., Neurosci. Lett. 402: 81-85, 2006 など)。 細胞内 Ca²⁺ は受容体、イオンチャネルをは じめとする様々な細胞内タンパク質の機能 調節をしていることが知られており、この自 発 Ca²⁺ 振動は、神経ネットワークにおける 情報処理に関与していることが示唆される。 そこで、線条体における自発 Ca²⁺ 振動に関 する研究を進めることにより、線条体ニュー ロン-グリア神経ネットワークにおける情報 処理機構の解明を目指す。

2.研究の目的

本研究では線条体における自発 Ca²⁺ 振動の 情報処理機構への関与を明らかにするため に、以下の目的に焦点を絞り研究を行う。 (1) ニューロン、グリア細胞を明確に区別 した上で、自発 Ca²⁺ 振動を生理実験により 計測する。Ca²⁺ 濃度変化の時空間特性を明ら かにできる Ca²⁺ イメージング法を用い、多 細胞の Ca²⁺ 動態を同時に計測する。 (2) 新しい解析法を導入し、自発 Ca²⁺ 振動 の特徴を明らかにする。 Ca²⁺ 濃度は連続量 であり、その変化の大きさ、持続時間、間隔 は更な情報を担っていると考えられる。そ

こで、生データの情報をできるだけ保持して、 その特徴を記述できる解析方法を導入する。 (3)異常な神経ネットワークの状態を人為 <u>的に作成し、その際の自発 Ca²⁺ 振動の変化</u> <u>から、情報処理への関与を明らかにする。</u> 様々な神経伝達阻害薬を用いて、自発 Ca²⁺ 振動を計測・解析し、その結果とシミュレー ション解析とを組み合わせて、自発 Ca²⁺ 振 動の情報処理への関与を明らかにする。

研究の方法

ニューロンとグリア細胞を区別するために、 グリア細胞の多くを占めるアストロサイト にのみ蛍光タンパク質である GFP を発現し ているマウス (GFAP-GFP マウス, Zhuo et al., Dev. Biol. 187: 36-42, 1997) を実験 動物として用いた。標本には、このマウスの 厚さ 300 µm の大脳皮質 - 線条体スライスを 用いた。このスライス標本に対して、Ca²⁺ 感 受性蛍光色素 Fura-PE3 のアセトキシメチ ルエステル体を負荷し、冷却 CCD と高速波 長切替え装置を備えた、正立落射蛍光顕微鏡 下に静置した(図 1)。この実験系を用い、 340 nm と 380 nm の二波長で交互に励起し た際の、510 nm 付近の蛍光強度比(R) を計 測し、R の変化 (ΔR) を細胞内 Ca²⁺ 濃度の 変化とした。この方法により、線条体におけ る自発細胞内 Ca²⁺ 振動のイメージング計測 を行った。

また、データ解析は、我々が作成した MATLAB (MathWorks 社) プログラムを用いて行った。 なお、全ての実験計画および手法は、大阪大 学大学院工学研究科動物実験委員会、及び大 阪大学安全委員会の承認を得て行った。

4. 研究成果

 (1) ニューロン、グリアにおける自発 Ca²⁺ 振動

GFAP-GFP マウスでは、グリア細胞の多くを 占めるアストロサイトにのみ GFP を発現し ているため、GFP 蛍光を観察するだけで、細 胞が生きたままの状態で、ニューロンとグリ アを区別することができる。この GFP 蛍光

図 1. Ca²⁺ イメージングシステムの模式 図。 と、 Ca^{2+} 感受性蛍光色素の Fura-PE3 蛍光を 観察した結果を図 2(a) に示す。この標本を 用いて、細胞内 Ca^{2+} 濃度変化を計測したと ころ、ニューロン、グリア双方で、活動電位 依存の Ca2+ 濃度変化に比べ、はるかに持続 時間の長い自発 Ca^{2+} 振動が観測された。図 2(b) に自発 Ca^{2+} 振動の時間経過の代表例

図 2. 線条体ニューロン (Neuron) 及びア ストロサイト (Astrocyte) における自発 Ca²⁺ 振動

(a) GFAP-GFP マウス線条体スライス標本 における、GFP 蛍光 (緑) と Fura-PE3 蛍 光 (赤)。スケールバー: 100 μm。

(b) 図 (a) の 1-3 のニューロンと、4-6 の アストロサイトにおける自発 Ca^{2+} 振動の 時間経過。スケールバー: 100 s (横軸), ΔR =0.01 (縦軸)。 を示す。この図から分かるように、自発 Ca²⁺ 振動の時系列パターンは様々であった。バー スト様の変動を見せるもの(cell 1)、短い パルス状の変動を見せるもの(cell 2)、周 期的な活動を見せるもの(cell 3)、長い持 続時間を持つもの(ほとんどのアストロサ イト)などが観測された。 また、これらの自発 Ca²⁺ 振動は、ニューロ ン、アストロサイトの双方とも、活動電位の 阻害及び興奮性シナプス伝達の遮断では、消 失せず、細胞内 Ca²⁺ ストア内の Ca²⁺ を枯渇 させることにより、ほとんど消失した。

(2) ニューロン・グリア双方における自発
 Ca²⁺ 振動の特徴

図 2 に示したように、線条体における自発 Ca²⁺ 振動には、様々なパターンのものがある。 これらの特徴を記述するために、細胞内 Ca²⁺ 変動の時系列データから個々のイベントに 分解し、それぞれに対して、振幅(peak amplitude)、持続時間 (duration)、立ち上 がりの傾き (rise slope)、減衰の傾き (decay slope) の各パラメータを抽出し、そ れらの分布を、ニューロンとアストロサイト で比較した(図3)。その結果、全てのパラ メータで、ニューロンーアストロサイト間に 有意差があり、いずれのパラメータも、ニュ ーロンの方が大きな値を持つ割合が高いこ とが判明した。つまりニューロンでは、グリ アに比べて、振幅、持続時間、立ち上がりの 傾き、減衰の傾きが大きいものが多いことが

図 3. 線条体ニューロン (Neuron) 及びア ストロサイト (Astrocyte) における自発 Ca²⁺ 振動の特徴の比較

ニューロン (青線) 及びアストロサイト
(赤線) における自発 Ca²⁺ 振動の (A) 振幅、(B) 持続時間、(C) 立ち上がりの傾き、
(D) 減衰の傾き、の累積相対密度分布。各図中の p 値は Kormogorov-Smirnov 検定による、ニューロン-アストロサイト間のパラメータの違いの有意水準を示している。

明らかとなった。

(3) 人為的に作成した異常な神経ネットワ
 ークにおける自発 Ca²⁺ 振動
 この自発 Ca²⁺ 振動が、神経活動から影響を

図 4. 線条体ニューロン (Neuron)における 自発 Ca²⁺ 振動の特徴の TTX 投与による 変化。

ニューロンにおける自発 Ca²⁺ 振動の (A) 振幅、(B) 持続時間、(C) 立ち上がりの傾き、 (D) 減衰の傾き、の累積相対密度分布。通 常時 (青線) と TTX 投与時 (赤線) を比 較している。N.S. は no significance の略。

図 5. 線条体グリア細胞 (Astrocyte) にお ける自発 Ca²⁺ 振動の特徴の TTX 投与に よる変化。

アストロサイトにおける自発 Ca²⁺ 振動の (A) 振幅、(B) 持続時間、(C) 立ち上がりの 傾き、(D) 減衰の傾き、の累積相対密度分 布。通常時 (青線) と TTX 投与時 (赤線) を比較している。全てのパラメータ分布に 有意差はなかった。

受けているか否かを明らかにするために、ニ ューロンにおける活動電位を阻害するテト ロドトキシン (TTX) を投与して、人為的に 神経活動を阻害した状態で、自発 Ca²⁺ 振動 の計測を行い、図 3 と同様の解析を行った (図 4, 5)。その結果、通常の状態と活動電 位を阻害した状態とで、ニューロンにおいて は、振幅、持続時間、立ち上がりの傾きの3 つのパラメータに有意差があり(図 4)、グ リアでは図 2 の解析で抽出した 4 つの全 てのパラメータに変化が無かった(図 5)。 これらの結果から、ニューロンにおける自発 Ca²⁺ 振動は、神経活動から影響を受けている が、グリアにおける自発 Ca²⁺ 振動は、活動 電位から影響を受けていないことが明らか となった。

これらの結果及び、これまでの報告の結果と 合わせて考えると、図 6 のような、Ca²⁺ 変 動経路が想定される。

これらの Ca²⁺ 動態をシミュレーション解析 するための予備研究として、イオンチャネル 及び細胞内 Ca²⁺ 制御機構のモデルを作成し、 活動電位依存の細胞内 Ca²⁺ 濃度変化のシミ ュレーション解析を行い、実験結果をよく説 明できる、生理学的細胞モデル構築を行うこ とができた。

(4) Ca²⁺ イメージングによる、多細胞神経活
 動計測の応用

本研究課題において確立した、多細胞同時 Ca²⁺ 濃度計測を応用し、以下の研究を行った。 大脳皮質視覚野において、神経刺激に対する、 経シナプス信号伝播を計測し、機能的神経回 路構造を明らかにした。網膜では、逆行性色 素導入法を用い、神経節細胞にのみ Ca²⁺ 感 受性蛍光色素を導入し、電気刺激により刺激 されうる細胞の範囲を同定した。

このように、本研究で確率された、多細胞同時 Ca²⁺ 濃度計測法は、脳・神経の他の領域 でも有用であることが明らかとなった。

図 6. 線条体ニューロン (Neuron) グリア (Astrocyte) における自発 Ca²⁺ 振動発生機 構のモデル図。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 6件)

- ① Ishiki T, Tanaka S, <u>Osanai M</u>, <u>Doi S</u>, Kumagai S, <u>Yagi T</u>. Bifurcation-Based Model Construction of a Pyramidal Cell of the Primary Visual Cortex. International Journal of Innovative Computing, Information and Control 5: 831-845, 2009. (査読あり)
- ② <u>Osanai M</u>, Okazaki Y, Shiroma S, Takeno Y, Kaizo H, Yamada N, Tanaka S, Yaguchi Y, <u>Yagi T</u>. Visualization of brain activity from in vitro to in vivo. SCIS & ISIS 2008: 263-268, 2008. (査読あり)
- ③ Ishiki T, Tanaka S, <u>Osanai M</u>, <u>Doi S</u>, Kumagai S, <u>Yagi T</u>. Global bifurcation analysis of a pyramidal cell model of the primary visual cortex: towards a construction of physiologically plausible model. Lecture Notes in Computer Science 4984: 7-17, 2008. (査 読あり)
- ④ 小山内 実, 矢口 雄一,山田 尚宏,大 星 文人,八木 哲也.線条体における自 発カルシウム濃度変化.電気学会論文誌 C 128: 1050-1057, 2008.(査読あり)
- ⑤ 小山内 実, 榮原 晴子, 澤井 元, 宋 文 杰, 八木 哲也. 網膜電気刺激に対する網 膜および視覚野応答の光学計測. 電気学 会論文誌 C 127: 1595-1602, 2007. (査 読あり)
- ⑥ 小山内 実,北川 豊啓,八木 哲也.人工 視覚システム実現に向けた網膜電気刺激 に対する神経節細胞応答の検証.生体医 工学 45(1):63-69,2007.(査読あり)

〔学会発表〕(計18件)

- <u>Osanai M</u>. Visualization of brain activity from in vitro to in vivo. Advances in Neuroengineering II. Osaka University, 2009/2/3.
- ② 瀧本 翔太,田中 哲史,小山内 実,八木 <u>哲也</u>.視覚野信号伝播における GABA 受 容体阻害剤の効果.脳と心のメカニズム 第 9 回冬のワークショップ.ルスツ, 2009/1/13.
- ③ 矢口 雄一,小山内 実,山田 尚宏,田 村 貴彦,八木 哲也.大脳基底核線条体 における自発カルシウム濃度変化.脳と 心のメカニズム 第 9 回冬のワークショ ップ.ルスツ,2009/1/13.
- ④ <u>Osanai M</u>, Yaguchi Y, Yamada N, <u>Yagi T</u>. Spontaneous Ca2+ transients in neurons and glial cells in the striatum.

Program No. 179.14. Neuroscience Meeting Planner: Soc. Neurosci. 2008. Online. Washington, DC. 2008/11/16.

- ⑤ 小山内 実, 矢口 雄一,山田 尚宏,八 木 哲也. 線条体ニューロン・グリアにお ける自発カルシウム変動.第 23 回生 体・生理工学シンポジウム論文集:77-78. 名古屋大学,2008/9/28.
- (6) <u>Osanai M</u>, Okazaki Y, Shiroma S, Takeno Y, Kaizo H, Yamada N, Tanaka S, Yaguchi Y, <u>Yagi T</u>. Visualization of brain activity from in vitro to in vivo. SCIS & ISIS 2008. Nagoya University, 2008/9/18.
- ⑦ 小山内 実,田中 哲史,武野 祐介,八
 木 哲也.抑制性シナプス伝達が視覚野
 神経回路中の信号伝播に与える影響.第
 12 回視覚科学フォーラム.大阪大学,2008/8/28.
- (8) <u>Osanai M</u>, Tanaka S, Takeno Y, <u>Yagi T</u>. Inhibitory synapses are responsible for the signal propagation properties in the visual cortical circuit. Neurosci. Res. 61 (Suppl. 1), S175. Tokyo, Japan, 2008/7/10.
- ③ <u>Osanai M</u>, Yamada N, Yaguchi Y, <u>Yagi T</u>. Spontaneous Ca2+ transients in neurons and glial cells of the striatum. J. Physiol. Sci. 58 (Suppl.): S56. Tokyo, Japan, 2008/3/26.
- ① <u>Osanai M</u>. Calcium imaging for investigating the spatio-temporal properties of the neural activity. EDIS 2008 satellite symposium "Advances in Neuroengineering". Osaka University, 2008/1/23.
- Osanai M, Okuno H, Ohkura S, Ida T, Kanemoto D, Hasegawa J, Kotani N, Hashimoto Y, Ohkura T. Research and development for an advanced bio-imaging system. 1st Global COE International Symposium "Electronic Devices Innovation" Proceedings: 165-168. Osaka University, 2008/1/18.
- (12) <u>Osanai M</u>, Shiroma S, Takeno Y, Uegaki H, Tanaka S, <u>Yagi T</u>. On the propagation of signals in visual cortex induced by electrical stimulation -Where to stimulate with a cortical implant?-Proceedings of the International Symposium on Biological and Physiological Engineering / The 22nd SICE Symposium on Biological and Physiological Engineering: 153-154. Harbin, China, 2008/1/14.
- ① 石木 達也,田中 哲史,小山内 実,土居 伸二,熊谷 貞俊,八木 哲也.大域的分

岐解析に基づく大脳皮質視覚野錐体細胞 モデルの構築. 電気学会研究会資料 ECT-07-106: 19-24. 新潟, 2007/12/8.

- Ishiki T, Tanaka S, <u>Osanai M</u>, <u>Doi S</u>, Kumagai S, <u>Yagi T</u>. Global bifurcation analysis of a pyramidal cell model of the primary visual cortex: towards a construction of physiologically plausible model. Proc. 14th International Conference on Neural Information Processing (ICONIP 2007): 67. Kiyakyushu, Japan, 2007/11/14-16.
- (5) <u>Osanai M</u>, Tanaka S, Takeno Y, <u>Yagi T</u>. The spatio-temporal properties of the signal propagation in the visual cortical microcircuit. Program No. 451.7 Neuroscience Meeting Planner: Soc. Neurosci. 2007. Online. San Diego, CA. 2007/11/5.
- 16 小山内 実,田中 哲史,瀧本 翔太,八 木 哲也.カルシウムイメージング法に よる視覚野局所神経回路の探索.第 11 回視覚科学フォーラム.生理学研究所, 2007/10/5.
- ① <u>Osanai M</u>, Uegaki H, <u>Yagi T</u>. Signal propagation properties in the visual cortex evoked by flush photolysis of a caged glutamate. Neurosci. Res. 58S: S96. Yokohama, Japan, 2007/9/10.
- 18 小山内 実, 矢口 雄一,山田 尚宏,大 星 文人,八木 哲也.線条体における自 発カルシウム濃度変化.平成 19 年電気 学会 電子・情報・システム部門大会講演 論文集:18.大阪府立大学,2007/9/4.

[その他]

ホームページ

http://brain.eei.eng.osaka-u.ac.jp/~osa nai/

6.研究組織
 (1)研究代表者
 小山内 実(OSANAI MAKOTO)
 大阪大学・大学院工学研究科・講師
 研究者番号: 90286419

(2)研究分担者
 土居 伸二 (DOI SHINJI)
 大阪大学・大学院工学研究科・准教授
 研究者番号: 50217600

八木 哲也(YAGI TETSUYA)大阪大学・大学院工学研究科・教授研究者番号: 50183976