科学研究費補助金研究成果報告書

平成21年6月26日現在

研究種目 : 基盤研	f究(C)
研究期間 : 2007~	-2008
課題番号 : 19560	693
研究課題名(和文)	反応性プラズマによるハイブリッド粒子創製に関する研究
研究課題名(英文)	Creation of hybrid-nano powders by using reaction between reactive thermal plasmas and metals
研究代表者	
奥山 秀男(OK	UYAMA HIDEO)
独立行政法人物	質・材料研究機構・ナノセラミックスセンター・主席エンジニア
研究者番号:803	54215

研究成果の概要:新奇なハイブリットナノ粒子創製を目的に「アークプラズマ-金属」反応法 を用いて、TiN-Si ハイブリットナノ粒子、TiN-Ag ハイブリットナノ粒子作製を行い、諸特性に ついて検討を行った.TiN-Si ハイブリットナノ粒子はこれまで得られてきたハイブリットナノ 粒子(例えば、TiN-Fe, TiN-Ni, TiN-Pd など)とは異なった形態を、また TiN-Ag は、従来型 の形態であることなどが判明した.この結果は、材料が本法により強制的に蒸発し冷却過程で 凝縮・成長固化する反応温度の差異によることが判明した.

交付額

			(金額単位:円)
	直接経費	間接経費	合 計
2007 年度	2, 400, 000	720, 000	3, 120, 000
2008 年度	1, 100, 000	330, 000	1, 430, 000
年度			
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

研究分野:工学

科研費の分科・細目:材料工学、複合材料・物性

キーワード:ナノ粒子、アークプラズマ、ハイブリッド、強制蒸発、複合、TiN、Ag、Si

1. 研究開始当初の背景

申請者らは、金属材料技術研究所(NIMSの 前身)において、金属を水素雰囲気中でアー ク溶解すると金属が強制的に蒸発する現象、 すなわち真空状態における金属の蒸発速度 よりも蒸発速度が大きいという特異現象を 発見した.後に、これはアークプラズマ中で 解離し、活性化した原子状水素と金属との反 応に起因するものであることが判明した.研 究者らは、この強制蒸発現象を利用した各種 材料のナノ粒子化プロセスを提案して、作製 条件を検討してきた.その結果、金属や反応 ガスの種類、反応条件の選択により、金属(合 金を含む),セラミックス(窒化物,炭化物, ホウ化物,酸化物),複合化物(金属とセラ ミックスが結合したハイブリッド型ナノ粒 子),カーボンナノチューブなど,極めて広 範な材料のナノ粒子化が効率的に達成でき ることが判明した.中でも,金属とセラミッ クスが結合したハイブリッド型ナノ粒子は 本製法でのみ作製されるもので,他の方法で の報告例はないのが現状である.

2.研究の目的

本研究は、プラズマ反応を用いた新しいハ イブリッド型ナノ粒子の創製を試み、その特 性評価を通じて,機能性用途の探索を目的と するものである.これを実現するために Ti-Si 及び Ti-Ag 合金を出発原料として, TiN-Si ハイブリッドナノ粒子, TiN-Ag ハイ ブリッドナノ粒子を作製し,諸特性を調査し た.

- 研究の方法
- (1) 試料の作製方法

スポンジ Ti (純度 99.9%) と Ag(純度 99.9%), Si (純度 99.99%)の各2元素を 5%H₂-Ar (0.1MPa 程度) 雰囲気中でアーク溶 解を数回繰り返し半球状のボタンインゴッ トを作製した. ここで, 各合金の Ti 濃度は 60-90at%とした. 作製したボタンインゴッ トを水冷銅ハース上に設置し, 7%N2-46%H2-Ar (全圧:0.1Mpa)雰囲気中でガス流量(5×10⁻⁴ m³/s), アーク電流(150 A), アーク電圧(35-45 V),反応時間(360-600 s)の条件下でアー クプラズマを発生させ試料を加熱・溶解し, 強制蒸発現象を起こさせ, ハイブリッドナノ 粒子を作製した.図.1に作製装置の概略図を 示す. 生成されたナノ粒子はアークプラズマ 発生室の上部から下部に向かう旋回流によ って下部のナノ粒子捕集室に運ばれる. 生成 された複合ナノ粒子は、ナノ粒子捕集室から 大気中に取り出す前に, 急激な酸化による発 火を防止するため, 酸素 (1 vol% Air 程度) を僅かに含む Ar 雰囲気下で徐酸化処理を施 した.

図 1 複合ナノ粒子作製装置の概略図

(2) ハイブリットナノ粒子の特性

ハイブリットナノ粒子の相の同定と格子 定数を算出するため XRD 測定を行った (RINT2100, リガク製, 管電圧 40kV, 管電流 36mA). また, ハイブリットナノ粒子の形状

を解析するため SEM (HITACHI S-4300SE) 観 察を行った、さらに、TEM 観察は、主に3次 元電子分光電顕(JEM-3200FSK:加速電圧 300kV)と高分解能高電圧型電子顕微鏡 (JEM-4000EX:加速電圧 400kV)を用い、ハ イブリットナノ粒子の形状及び構造解析を 行った.

(1) TiN-Si 系ハイブリッドナノ粒子

- 4. 研究成果
- (200) ○ TiN \Box Ti₅Si₃ (111)(220)Ο a.u. (311) (222) (211)30 40 50 60 70 80 90 100 $2\theta/\text{deg}$
 - 図 2 XRD測定結果(出発材料:80at%Ti-Si)

図.2に80at%Ti-Si を原料としアークプラ ズマ法により作製したナノ粒子粉末の XRD 測定結果を表に示す.6本の回折ピークが観 察され、48°付近に存在する強度の弱いピー クを除いて残りの 5 本のピークは全て TiN の回折パターンであった. 48°付近に存在す るピークは, Ti₅Si₃ (JCPDS : 29-1362 a=7.444Å, c=5.143Å)の(211)面からの回 折であると考えられ, TiNとTi_sSi_sを生成し ていることが確認された. Ti₅Si₃の回折ピー クが1本しか確認されず, さらにそのピーク 強度が弱かったのは、TiN の(111), (200)面 からの回折ピークと重なったことや、Ti₅Si₃ の粒径が小さかったためではないかと推察 された. なお, Si の回折ピークが出現しな かった. XRD から求めた TiN の格子定数は, 4.228 Å であり、JCPDS の値よりも若干小さ な値であった.

図.3 は、TiN-Si 系ハイブリッドナノ粒子 の TEM 像である. 直方体状の粒子やファセッ トを持つ粒子などが観察された. 粒径分布は, 数nmの粒子から,数百nmの粒子まで観察さ れた.図.4はEDSから得られた直方体状の粒 子と元素マッピング像である.これより,直 方体の中心部に TiN が, 隅に Si が存在する ことが判明した.

Ti とSi の金属間化合物には,5 種類(Ti₃Si, Ti₅Si₃, Ti₅Si₄, TiSi, TiSi₂)存在することが知 られている. その中でも Ti₅Si₃ が生成された

図.3 TiN·Si系ハイブリットナノ粒子のTEM像

図.4 TiN-Si系ハイブリットナノ粒子の TEM像と元素マッピング象

理由は、標準生成エンタルピーが最小値 (-579 kJmol⁻¹)を示し最も熱力学的に安定な 化合物であること.また、Ti₅Si₃ 以外の化合 物は化学量論組成が存在するのに対し、 Ti₅Si₃ は非化学量論組成(Si を 3.3wt%固溶) を持つことから、Ti₅Si₃ が生成されたと考え られる.TEM 観察の結果、Ti₅Si₃ は、立方体 状 TiN 粒子の外周部に付着していた.

以上の結果から, TiN-Si ハイブリッドナ ノ粒子の生成過程は, 次のように考えられる. ① 強制蒸発現象による Ti 及び Si の蒸気が Ti-Si 合金より発生.

- 温度の低下により、Ti₅Si₃より融点が高い TiN の核生成ならびに成長.
- ③TiN 粒子の一部が立方体状に成長.
- ④ 更なる温度の低下により、Si より融点が

高いTi₅Si₃の核生成ならびに成長.

- ⑤ Ti₅Si₃ 粒子が TiN 粒子の{111}や{200}面 などに付着.この時、Ti₅Si₃ 粒子の生成に よる何らかの影響を受け、TiN 粒子の一部 が斜方切頂立方八面体や切頂八面体とい った形状のまま成長が停止.
- ⑥ 更なる温度の低下により Si の生成が始 まり, TiN ナノ粒子などに付着.

TiN は立方体の形状が安定な形であるが、 80at%Ti-Si では切頂八面体, 斜方切頂立方 八面体が観察されたことから, TiN ナノ粒子 が立方体に成長するまでの過程は次のよう になると考えられる.まず,不定形の核から {111} 面の割合が多い切頂八面体となり、 徐々に{111}面の割合が少なくなり斜方切頂 立方八面体となり、最終的に全て {200} 面で 囲まれた立方体に成長すると考えられる.後 に示す 80at%Ti-Ag ハイブリットナノ粒子の TiN の形状は、立方体が大多数であったが、 80at%Ti-Si では、斜方切頂立方八面体や切 頂八面体などの形状の粒子が生成していた. これは、Ti₅Si₃の生成が影響した、つまり、 Ti₅Si₃ 粒子が最も密な面で成長が遅い {111} 面に付着することで、TiN 粒子の成長が抑制 され、斜方切頂立方八面体になったと考えら れる.

(2) TiN-Ag ハイブリッドナノ粒子

図.5 XRD測定結果(出発材料:80at%Ti-Ag)

図.5に80at%Ti-Ag を原料としアークプ ラズマ法により作製したハイブリッドナノ 粒子粉末のXRD 測定結果を示す.この図から fcc 構造のAg (JCPDS:4-783 a=4.086 Å) と TiN の回折パターンが観察された.純 Ti や Ag の窒化物, Ti-Ag 合金の回折ピークは確 認されなかった.格子定数はTiN が 4.234 Å, Ag が 4.083 Å であり, TiN, Ag 共に JCPDS の値に近似した値であった.

図.6にTiN-Ag 系ハイブリッドナノ粒子の 代表的な SEM 像を示す. 図中の立方体は

図.6 TiN-Ag複合ナノ粒子粉末のSEM像

TiN単結晶でその表面に半球状のAgナノ粒子 が付着している.また,このAg付着ナノ粒 子を介してTiN粒子が交互に付着した立体構 造が形成されている.これは、TiN-Ag複合ナ ノ粒子全てこのような形態をとるとは限ら ない.30-200nmのTiN立方体同士の間に比較 的小さなAgナノ粒子がサンドされているも のやTiN立方体表面に付着しているのも観察 された.

図.7 TiN-Agハイブリットナノ粒子のTEM像

図.7にTiN-Ag 系ハイブリッドナノ粒子の TEM 像を示す. 立方体状のTiN 粒子の周りに 数 nm の粒子が付着している様子が観察され た. 高分解能像の観察から数 nm の粒子は面 間隔がそれぞれ 2.3Å, 2.3Å, 2.0Å であり, EDS 点分析の結果と照らし合わせると Ag ナ ノ粒子であることが判明した. なお, TiN 粒 子の中には Ag 粒子は存在していなかった. TiN 粒子の形状は,立方体が大多数であった が, 三角形状のTiN 粒子も稀に観察された.

これら得られた結果をもとに本法による Ti-Ag 系複合ナノ粒子は、以下のような生成 過程を経て形成されると推察した.

 Ti-Ag合金のアークプラズマ溶解により,溶 融金属から Ag および Ti が強制蒸発 (10000−5000°C).

- ② Ti 蒸気の一部が雰囲気中の窒素と反応して微小な TiN 核を形成(3300℃近傍).
- ③ TiN核は雰囲気中のTi 蒸気と窒素から大き く成長.この温度領域では Ag は蒸気で存 在.
- ④ 温度低下とともに TiN ナノ粒子サイズも成長 すると同時に Ag 蒸気が凝集し, Ag 液滴粒 子が TiN 結晶ナノ粒子の表面上に付着(点 状の Ag ナノ粒子(5nm 程度)).
- ⑤ さらに低温(3000-960℃)域を TiN 結晶ナ ノ粒子が飛行する際に大きく成長した Ag 液 滴ナノ粒子(10-200nm)と衝突すると,図.6 に示したような大小の Ag ナノ粒子が共存付 着した形態となる.

(まとめ)

本手法の特徴は、(1)多品種ナノ粒子の作製 可能、(2)異種材料の均一混合ナノ粒子作製 が可能、(3)省エネ、無公害な作製方法、(4) ナノ粒子化の出発材料形状の任意性、(5)粒 子表面清浄、高純度化、である.この手法を ハイブリッド型ナノ粒子作製に適用し、金 属ナノ粒子とセラミックスナノ粒子が結 合・一体化したハイブリッド型ナノ粒子を提 案した.

また,A 元素として Ti (窒素との親和力が大), B 元素として Si, Ag (Ti より窒素との親和力 が小)からなる2元系合金組成を作製し,そ の合成モデルを示した.

5. 主な発表論文等

(研究代表者,研究分担者及び連携研究者に は下線)

[雑誌論文](計 1件) ①Kitawaki.Ko, Kaneko.K, <u>OKUYAMA.Hideo</u>, <u>SAKKA .Yoshio</u>, UDA Masahiro "Fabrication and characterization of TiN-Ag nano-dice", MICRON, 40 (2009) 308-312. 査読有

〔学会発表〕(計 2件)

- ①北脇高太郎,金子賢治,奥山秀男,<u>目義</u> <u>雄</u>,宇田雅広,"アークプラズマ法により 生成された複合ナノ粒子の3次元構造解 析",日本顕微鏡学会,九州支部学術講演会, 2008年12月6日,久留米大医学部筑水会 館
- ②北脇高太郎,金子賢治,<u>奥山秀男,目義</u> <u>雄</u>,宇田雅広,"アークプラズマ法により 生成された複合ナノ粒子の構造解析",日本顕微鏡学会第64回大会,2008年5月26 日,国立京都国際会館

〔産業財産権〕 ○出願状況(計 2件) ①名称:TiN結晶体 発明者: 奥山秀男, 目義雄, 宇田雅広, 金子賢治 権利者:(独)物質·材料研究機構 種類: 特願 番号: 2008-131419 出願年月日:2008年5月20日 国内外の別:国内 ②名称:TiN結晶体とその結合体 発明者:奥山秀男,目義雄,宇田雅広, 金子賢治 権利者:(独)物質·材料研究機構 種類:特願 番号: 2008-131424 出願年月日:2008年5月20日 国内外の別:国内 6. 研究組織 (1)研究代表者 奥山 秀男(OKUYAMA HIDEO) 独立行政法人物質・材料研究機構・ナノセ ラミックスセンター・主席エンジニア 研究者番号:80354215 (2)研究分担者 目 義雄 (SAKKA YOSHIO) 独立行政法人物質・材料研究機構・ナノセ ラミックスセンター・センター長 研究者番号:00354217 打越 哲郎 (UCHIKOSHI TETSUO) 独立行政法人物質・材料研究機構・ナノセ ラミックスセンター・主席研究員 研究者番号:90354216 鈴木 達 (SUZUKI TOHRU) 独立行政法人物質・材料研究機構・ナノセ ラミックスセンター・主幹研究員 研究者番号:50267407

(3)連携研究者

なし