科学研究費補助金研究成果報告書

平成21年6月26日現在

研究種目: 基盤研究 (C)				
研究期間: 2007~2008				
課題番号:19560716				
研究課題名(和文) 複合体の界面拡散反応を利用した二 硼 化 マグネシウム超伝 導 線 材 の作 製				
研究課題名(英文)Fabrication of magnesium di-boride superconductor applying a interface diffusion of composite material				
研究代表者				
熊倉 浩明(KUMAKURA HIROAKI)				
独立行政法人物質・材料研究機構・超伝導材料センター・センター長 研究者番号:90354307				

研究成果の概要:

マグネシウム(Mg)棒とホウ素(B)粉末を金属管内に配置して加工した線材において、熱処 理によって界面拡散反応を起こさせて MgB2超伝導層を生成させる方法により MgB2線材を作 製した。生成した MgB2層は従来の線材化法であるパウダー・イン・チューブ法の場合よりも 充填率がはるかに高く、そのために実用的に重要な超伝導電流密度については、従来法の二倍 以上の良好な特性が得られ、この線材化法が実用的に有望であることがわかった。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	2, 200, 000	660, 000	2, 860, 000
2008年度	1, 300, 000	390, 000	1, 690, 000
年度			
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

研究分野:工学

科研費の分科・細目:材料工学、材料加工・処理 キーワード:超伝導材料・素子、材料・加工処理、拡散反応、臨界電流、線材

1. 研究開始当初の背景

2001 年に発見された二ホウ化マグネシウム(MgB2) 超伝導体は、39K と金属系超伝 導体では最も高い超伝導転移温度 T。を有し、 液体水素や冷凍機を冷却手段とする新たな 超伝導応用に向けて、その線材化技術の開発 が進められている。しかし MgB2は金属間化 合物に属し、自身は塑性変形能をまったく有 さないために線材化にあたっては特殊な技 術開発が必要である。

研究開始当初において世界的に主流となっていた線材化法は、超伝導体の原料混合粉 末を金属管に充填して線材に加工後、熱処理 をする PIT(Powder-In-Tube)法である。しか しながら PIT 法で MgB2線材を作製した場合 は、生成される MgB2の密度が Mg と B の密 度よりも大きいために、反応時に 27%もの体 積収縮が起こり、内部に空隙が生成されるこ とが避けられない。このために得られる MgB2 超伝導層の充填密度が十分に高くなら ず、超伝導電流のパスが細くなって肝心の臨 界電流密度が実用上十分でない、という問題 点があった。

2.研究の目的

この PIT 法の欠点を克服する手段として、

線材の長手方向に配列させた複合体構成物 間の拡散反応によって MgB₂を層状に形成さ せることが考えられる。このような複合体の 形成は、例えば蒸着法のような高度な技術に よって可能であるが、将来の実用化を考えた 場合は、冷間加工のような単純なプロセスで 実現できることが望ましい。そこで本研究で は、PIT 法のかわりに、線材の長手方向に金 属マグネシウム合金棒とボロン(B)粉末と を配列させて複合体を作製し、構成物間の拡 散反応によって密度の高い MgB₂層を形成さ せて高い臨界電流密度を得ることを目的と した。

3. 研究の方法

複合体の作製法としては、PIT 法を改良した 以下の方法によった。図1に線材作製法を示 す。

図1(a) Mg-Li 二元状態図。(b)本研究で採 用した線材作製法。

純 Mg は六方結晶構造で加工性が悪く、線材 に加工できないと考えられるので Mg-Li 合 金を用いた。図 1 (a)に状態図を示すように 10wt%以上の Li を含む Mg-Li 合金は bcc の 結晶構造を有するので良好な加工性が期待 できる。そこで図 1 (b)に示すように金属(鉄) 管の中心に Mg-14wt%Li 合金棒を配置し、鉄 管と合金棒との隙間に、B 粉末あるいは B に 5 モル%の SiC を添加した混合粉末を充填し て溝ロール圧延ならびにダイス線引きによ って線材に加工後、アルゴン雰囲気中、種々 の条件下で熱処理をした。得られた線材の組 織を光学顕微鏡や走査電子顕微鏡、X 線回折 等で解析し、また臨界電流密度 J。を 4.2K-25K の温度、12 テスラの磁界中で通常 の四端子抵抗法で測定した。臨界電流 L。は1 μ V/cm のクライテリオンで定義した。

4. 研究成果

図2ならびに図3に Mg-Li 合金を用いて 作製した加工直後ならびに700℃で1時間熱 処理した後の線材の断面を示す。

図2 加工直後の線材断面(Mg-Li合金コア)。

図3 熱処理後の線材断面(Mg-Li合金コア)。

図2より、線材加工中に Mg-Li 合金コアは 断線することなく均一に加工されているこ とがわかる。また図3より熱処理によって Mg-Li コア中の Mg が周囲の B 粉末のところ に拡散して行き、反応が起こって化合物が生 成していることがわかるが、X 線回折からこ の化合物層は MgB2 であることがわかった。 また走査電子顕微鏡観察から MgB2層の充填 密度はPIT法による MgB2層の充填密度に比 べてはるかに高いことも判明した。しかしな がら臨界電流密度 J. を測定したところ、4.2K、 10 テスラで 300A/cm²程度と、PIT 法よる J_c である 3,000A/cm²と比べてはるかに低いこ とも判明した。この理由として Mg-Li 合金を 用いたために MgB2 層に Li が不純物として 混入して超伝導特性を低下させていること が原因であると考えられた。

そこで、線材加工中に破砕されることを覚 悟の上で Mg-Li 合金の代わりに純 Mg 棒を用 いたところ、予想に反して Mg 棒は破砕され ることなく、均一に加工され、良好な断面構 造が得られることが判明した。図 3(a)ならび に(b)に、純 Mg 棒を使って作製した加工直後 ならびに700℃で1時間熱処理した後の線材 の断面を示す。図2のMg-Li合金の場合と同 様にMg棒が均一に加工されて良好な断面構 造が得られていることがわかる。前述のよう にMgは六方晶の断面構造を持ち、加工性が 悪いことで知られているが、図3のような断 面構造では、周りのB粉末ならびにその外側 の金属管によって変形が制限され、破砕する ことなしに塑性変形すると考えられる。

図3(a) 加工直後の線材断面(純Mgコア)。

(b)

図3(b) 熱処理後の線材断面(純 Mg コア)。

図4に5モル%のSiCを添加し、700°Cで 1時間熱処理した線材から取り出した反応 生成物のX線回折パターンを示す。大きな Feに対応するピークが観測されるが、これは 化合物層を線材から機械的に取り出すとき にFeシース材から混入したものである。ま た純Mgのピークは残留Mgコアからのもの である。MgO不純物もかなり認められる。 このMgOは熱処理時においてアルゴン雰囲 気中に微量存在していた酸素がMgコアと反 応して生成したものと考えられる。以上のピ ークを除くと大部分のピークはMgB2のピー クと同定され、MgB2が主たる生成物である ことがわかる。

図4 線材から取り出した反応生成物のX線 回折パターン。

図 5 (a) には 5 モル%の SiC を添加し、 700°C で 1 時間熱処理した線材の MgB2破断 面の走査電子顕微鏡写真を示す。比較のため に、図 5(b)には、通常の PIT 法による線材の 破断面の組織を示す。通常の PIT 法線材では 粒状の MgB2組織が得られ、また多くの空隙 が存在しているが、これは PIT 法による MgB2線材の典型的な組織である。一方拡散 法線材の組織は PIT 法線材とは明らかに異 なっており、PIT 法に比べてはるかに充填率 の高い組織となっている。これより、Mg 拡 散法が高い MgB2充填率を得る有効な方法で あることがわかる。

図5 5 モル%の SiC を添加し、700℃ で1 時間熱処理した線材の破断面。(a)Mg 拡散法 による線材。(b)通常の PIT 法による線材。

得られた線材のT_eをSQUIDによる磁化測 定により評価したところ、5モル%のSiCを 添加し、700°Cで1時間熱処理した線材では 36KのT_eが得られたが、これは同じ条件で 熱処理をしたPIT法による線材の値にほぼ 等しい値である。

図6に純 Mg 棒を用いて作製した拡散法 MgB2線材の 4.2K における J_c-磁界特性を示 す。なお、J_cは I_cを反応層の断面積で割って 定義した。比較のために通常の PIT 法による 線材の値も示した。拡散法線材では、熱処理 温度が低下すると共に J_cが向上するが、同様 な傾向は PIT 法線材においても報告されて いる。SiC を添加した拡散法線材では無添加 線材に比べて J_c-磁界曲線の傾きが小さくな っているが、これは MgB2において B サイト のカーボン置換が起き、この置換によって MgB₂の上部臨界磁界 B_{c2} が増大したためと 考えられる。実際、X線回折により生成した MgB₂の a 軸の格子定数を測定すると 0.3081nm であり、この値は無添加試料の場 合の 0.3093nm よりも小さく、B サイトのカ ーボン置換の起きていることがわかる。

SiC を 5%添加し、 670° C で 3 時間熱処理 した線材においては 8 テスラの磁界中で 10^{5} A/cm²、10 テスラの磁界中では 41,000A/cm²のJ_cが得られ、これらの値は PIT 法による線材の J_c=15,000A/cm²の二倍 以上の高い値である。Mg 拡散法でこのよう に高い J_cが得られた理由は、図5に示したよ うに、拡散法によって高い MgB₂の充填率が 得られるためと考えられる。

図6 純 Mg 棒を用いた拡散法により作製した MgB₂線材の 4.2K における J_c-磁界特性。 比較のために PIT 法による線材の特性も示 す。

以上により、Mg 拡散法が高い J。を有する MgB2線材を作製する方法として極めて有望 であることが判明した。今後は、熱処理条件、 Mg フィラメント径、B 粉末への不純物添加 など、種々の作製条件の最適化を計ると 共に、多芯線材の作製を進め、本方法による MgB2線材作製法を確立して実用化に結び付 けたい。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 2件)

- J.M. Hur, K. Togano, A. Matsumoto, <u>H. Kumakura</u>, High critical current density MgB₂/Fe multicore wires fabricated by an internal Mg diffusion process, IEEE Transactions on Applied Superconductivity, in press. 査読有
- ② J.M. Hur, K. Togano, A. Matsumoto, <u>H. Kumakura</u>, H. Wada and K. Kimura,

Fabrication of high-performance MgB_2 wires by an internal Mg diffusion process, Superconductor Science and Technology, 21(2008) 032001(4pp) 査読 有

〔学会発表〕(計 5件)

- J. M. Hur, 戸叶一正、松本明善、<u>熊倉浩明</u>、和田 仁、木村薫、内部拡散法により作製した MgB₂線材の構造と J_c特性、低温工学・超伝導学会、2009 年 5 月 15 日、 早稲田大学(東京)
- <u>熊倉浩明</u>、新超伝導材料の可能性 MgB₂、鉄系超伝導、その他の新展開-、 応用物理学会、2009 年 3 月 30 日、筑 波大学(つくば市)
- ③ <u>熊倉浩明</u>、Densification of MgB₂ layers in MgB₂ tapes and wires、 International Workshop on Electronic Materials and Their Applications、2009年3月19日、 Wollongong University、オーストリア
- ④ J.M. Hur、戸叶一正、松本明善、<u>熊倉浩</u> <u>明</u>、和田仁、木村薫、High critical current density MgB₂/Fe multi-core wires fabricated by an internal Mg diffusion process, 2008 Applied Superconductivity Conference, 2008 年 8 月 20 日、シカゴ、米国
- ⑤ J.M. Hur、戸叶一正、松本明善、<u>熊</u> <u>倉浩明</u>、和田 仁、木村薫、内部拡 散法による MgB₂線材の作製、低温工 学・超伝導学会、2007 年 11 月 22 日、 宮城県民会館、仙台
- 6. 研究組織
- (1)研究代表者
 熊倉 浩明(KUMAKURA HIROAKI)
 独立行政法人物質・材料研究機構・超伝導
 材料センター・センター長
 研究者番号:90354307

(2)研究分担者 なし

(3)連携研究者 なし

(4)研究協力者
 戸叶一正(TOGANO KAZUMASA)
 独立行政法人物質・材料研究機構・超伝導
 材料センター・研究業務員
 研究者番号:60361169
 松本 明善(MATSUMOTO AKIYOSHI)
 独立行政法人物質・材料研究機構・超伝導
 材料センター・主任研究員

研究者番号:50354303許子萬(HUR JAHMAHN)東京大学・新領域創成科・大学院生