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The B7 family member B7-H3 (CD276) plays important roles in
immune responses. However, the function of B7-H3 remains con-
troversial. We found that murine B7-H3 specifically bound to
Triggering receptor expressed on myeloid cells (TREM)-like tran-
script 2 (TLT-2, TREML2). TLT-2 was expressed on CD8� T cells
constitutively and on activated CD4� T cells. Stimulation with
B7-H3 transfectants preferentially up-regulated the proliferation
and IFN-� production of CD8� T cells. Transduction of TLT-2 into T
cells resulted in enhanced IL-2 and IFN-� production via interactions
with B7-H3. Blockade of the B7-H3:TLT-2 pathway with a mAb
against B7-H3 or TLT-2 efficiently inhibited contact hypersensitivity
responses. Our results demonstrate a direct interaction between
B7-H3 and TLT-2 that preferentially enhances CD8� T cell
activation.

allergy � cosignal � CD8 � T cell activation � contact hypersensitivity

The B7 family of costimulatory proteins controls both posi-
tively and negatively T cell-mediated immune responses by

binding to counterreceptors expressed on the T cells (1–3).
B7-H3 (CD276) is a new member of the B7 family; it was
originally identified as a costimulatory molecule that induces T
cell proliferation and IFN-� production in humans (4). B7-H3 is
not expressed in significant amounts on freshly isolated lympho-
cytes and is weakly induced on dendritic cells (DCs) and
monocytes/macrophages upon activation (4–7). In addition to its
expression on activated lymphocytes (7), B7-H3 is detected on
various human and murine tumor cells (8–12), nasal and airway
epithelial cells (13–15), and osteoblasts (16).

The immunologic function of B7-H3 is controversial, with
conflicting costimulatory and coinhibitory functions being re-
ported. Several groups have demonstrated that soluble human
B7-H3 costimulates anti-CD3-mAb-induced T cell proliferation
and the production of effector cytokines such as IFN-� and IL-10
(4), and that cell surface B7-H3 introduced on tumor cells
enhances CTL generation in vitro (4) and antitumor immunity in
vivo (17–20). The acute and chronic cardiac allograft rejection
seen in B7-H3-deficient mice can be reduced by a subtherapeutic
regimen of immunosuppressants (21). These results support the
notion that B7-H3 promotes T cell-mediated immune responses.
In contrast, other groups have proposed the opposite functions
for B7-H3. Soluble mouse and human B7-H3 inhibit anti-CD3
mAb-induced T cell proliferation, cytokine production, and
activation of transcriptional factors such as NFAT, NF-�B, and
AP-1 (6, 7, 22). In B7-H3-deficient mice Th1-mediated hyper-
sensitivity and onset of experimental autoimmune encephalo-
myelitis (EAE) are promoted, and treatment with a blocking
anti-B7-H3 mAb exacerbates EAE (6, 7). Administration of
anti-B7-H3 mAb during the induction phase augments the
severity of Th2-mediated experimental allergic conjunctivitis
(23). DC-associated B7-H3 induced by CD4�CD25� regulatory
T cells (Tregs) impairs T cell stimulatory function (24). These
results suggest that B7-H3 is a negative regulator that prefer-
entially affects CD4 T cell responses.

Although the counter receptor for B7-H3 has not been
identified, soluble B7-H3 protein binds a putative counter
receptor on activated T cells that is distinct from CD28, CTLA-4,
ICOS, and PD-1 (4, 25). In the present study, we demonstrate
that Triggering receptor expressed on myeloid cells (TREM)-
like Transcript 2 (TLT-2, TREML2) is a receptor for B7-H3. We
describe the generation of functional blocking mAbs against
B7-H3 and TLT-2, as well as the expression and function of the
B7-H3-TLT-2 pathway in vitro and in vivo.

Results
B7-H3 Binds TLT-2. To identify the counterreceptor for B7-H3, we
performed a BLASTp search on the National Center for Bio-
technology Information (NCBI) database for proteins homolo-
gous to CD28 family members. Several candidate proteins were
extracted based on the EST expression patterns. The cDNAs for
candidate proteins, including TLT-2, TLT-4, TLT-6, CD300A,
and CD300D as well as CD28 family members, were transduced
into J558L cells that lacked B7-H3 by using the IRES-eGFP
bicistronic retroviral vector. B7-H3Ig bound specifically to TLT-
2-transfected J558L cells that expressed higher levels of eGFP
(Fig. 1A). Next, we assessed by flow cytometry the relative
affinity of serially diluted B7-H3Ig chimeric protein to the cell
surface by using a TLT-2-transduced DO11.10 hybridoma. The
mean fluorescence intensity (MFI) was assessed, and the disso-
ciation constant (Kd) was determined by Scatchard plot analysis.
The Kd value for B7-H3Ig binding to cell surface TLT-2 was 90 �
44 nM (Fig. 1B), which was comparable to Kd values for human
B7-DC binding to cell surface human PD-1 (89 nM) (26) and
mouse B7-DC binding to cell surface mouse PD-1 (143 nM)
(unpublished data), as assessed in flow cytometric binding
studies. To investigate the functional roles of B7-H3 and TLT-2,
we established mAbs against B7-H3 (MIH32 and MIH35, both
rat IgG2a, �) and TLT-2 (MIH47, rat IgG2a, � and MIH49, rat
IgM, �). MIH32 showed higher reactivity than MIH35 toward
B7-H3/eGFP-transduced J558L cells [supporting information
(SI) Fig. S1 A], whereas pretreatment of B7-H3Ig with MIH35
(Fig. 1C Upper), but not MIH32 (data not shown) inhibited
B7-H3Ig binding to TLT-2 on the surfaces of DO11.10 trans-
fectants. Therefore, we used MIH32 and MIH35 for flow
cytometric staining and the functional blocking analyses, respec-
tively. Although MIH47 and MIH49 reacted similarly to TLT-
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2/eGFP-transduced J558L cells (Fig. S1B), TLT-2 on T cell
surfaces was stained more sensitively by MIH47 (Fig. S1C).
B7-H3Ig binding to TLT-2 was inhibited by preincubation with
MIH49 (Fig. 1C), but not with MIH47 (data not shown).
Therefore, we used MIH47 for T cell staining and MIH49 for the
functional blocking analyses. The inhibition of binding between
B7-H3 and TLT-2 by anti-B7-H3 mAb or anti-TLT-2 mAb
suggests direct and specific binding of B7-H3 to TLT-2.

TLT-2 Is Expressed Constitutively on CD8� T Cells and Induced on CD4�

T Cells After Activation. Flow cytometry analysis revealed that
TLT-2 was expressed on freshly isolated CD8� T cells but not on
CD4� T cells (Fig. 2A). However, stimulation with anti-CD3
mAb (Fig. 2 A) or Concanavalin A (data not shown) clearly
induced TLT-2 on CD4� T cells. The TLT-2 expressed on CD8�

T cells was not changed to any great extent after activation.
These expression patterns were confirmed by RT-PCR (Fig.
2A). The CD4�CD25� Treg cells expressed a low level of TLT-2
mRNA. In splenocytes, the B220� B cells and CD11b� macro-
phages expressed TLT-2 (Fig. 2B). Low-level TLT-2 expression
was detected in CD49b� NK cells and CD11c� DCs. Peritoneal
B-1 (CD11bhighB220int), B-2 (CD11blowB220high), and CD11b�

macrophages expressed substantial levels of TLT-2. Immature
and mature BM-DCs expressed low and similar levels of TLT-2.
Although the above results were obtained by staining with
MIH47, staining by using MIH49 showed higher levels of TLT-2
expression on B cells (Fig. S1C) and myeloid cells (data not
shown), which was consistent with results presented in a previous

report (27). Differential reactivities of these mAbs may be
because of differences in epitopes on TLT-2 and glycosylation in
respective cell types. TLT-2 expression on various cell lines was
examined by RT-PCR (data not shown) and flow cytometry (Fig.
S2). High-level cell surface expression of TLT-2 was observed in
MBL-2 (a T cell line), A20.2J and BAL17 (B cell lines),
WEHI231.7, J774A.1, and WEHI3B cells (monocytic/
macrophage cell lines), and weak expression was detected in
DO11.10 (a T cell hybridoma), RAW264.7 (a macrophage cell
line), and DC2.4 cells (a DC-like cell line). Consistent with the
results obtained for freshly isolated cells, cell surface expression
of TLT-2 was seen for most of the B and myeloid cell lines.

B7-H3 Augments CD8� T Cell Responses. To investigate the func-
tional roles of B7-H3 in T cell activation, we generated several
B7-H3 transfectants that expressed high levels of B7-H3 and
performed T cell costimulation assays. Wild type (WT) P815
cells spontaneously expressed a low level of B7-H3, whereas
B7-H3-transduced P815 (B7-H3/P815) cells expressed an �50-
fold higher level of B7-H3 (Fig. 3A). CD4� and CD8� T cells
were cocultured with either Fc�R-bearing WT P815 or B7-H3/
P815 in the presence of anti-CD3 mAb. For the CD8� T cells,
the anti-CD3-induced proliferation and IFN-� production in-
duced by B7-H3/P815 were efficiently enhanced, as compared
with the responses induced by WT P815 (Fig. 3B). However,
CD4� T cells did not show clear differences in these responses
induced by B7-H3/P815 or WT P815 stimulation. Similar results
were obtained in a cell division assay involving CFSE-labeled
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CD4� and CD8� T cells (data not shown). To confirm the effects
of B7-H3-mediated costimulation on CD8� T cells, we examined
the antigen-specific responses by using OT-I TCR transgenic
CD8� T cells. OT-I CD8� T cells expressed a substantial level
of TLT-2, comparable to freshly isolated CD8� T cells from
BALB/c mice (Fig. 3C). OVA-expressing E.G7 cells were trans-
duced with B7-H3 or B7–1 (Fig. 3C). OT-I CD8� T cells
cocultured with B7-H3-transduced E.G7 (B7-H3/E.G7) showed
dramatically increased IFN-� levels in the culture supernatants,
as compared with coculturing with the control E.G7. The
enhanced level of IFN-� production was slightly lower than that
achieved by stimulation with B7–1/E.G7 (Fig. 3D). Furthermore,
cytotoxicity of OT-I CD8� T cells was clearly enhanced by
B7-H3/E.G7 cells preactivated for 3 days, as compared with the
control E.G7 (Fig. 3D). These results suggest that B7-H3 is a
potent costimulator for CD8� T cells.

Interaction of B7-H3 with TLT-2 Enhances T Cell Activation. We next
investigated whether the interaction of B7-H3 with TLT-2
induces T cell activation. The transduction of TLT-2 resulted in
prominent expression of TLT-2 on the DO11.10 cells (Fig. 4A).
When TLT-2-transduced DO11.10 (TLT-2/DO11.10) cells were
stimulated with B7-H3/P815 plus anti-CD3 mAb, IL-2 produc-
tion was markedly enhanced, compared with the control vector-
transduced DO11.10 (GFP/DO11.10) (Fig. 4A). These results
suggest that the interactions with TLT-2 and B7-H3 between
DO11.10 and P815 cells augment IL-2 production. Next, to
examine the involvement of TLT-2-mediated costimulation in
splenic T cells, we transduced TLT-2 into preactivated CD8� and
CD4� cells by using a retroviral transduction system. Transduc-

tion of TLT-2 resulted in higher levels of TLT-2 on both CD4�

and CD8� T cells, as compared with GFP-transduced control
cells (Fig. 4B). TLT-2-transduced CD8� T cells produced re-
markably high levels of IFN-� as compared with the control
CD8� T cells, regardless of stimulation with either WT P815 or
B7-H3/P815 (Fig. 4B). Similar results were obtained for TLT-
2-transduced CD4� T cells, although the levels of IFN-� pro-
duction were clearly lower than those seen for CD8� T cells.
These results indicate that TLT-2 expressed on both CD8� and
CD4� T cells positively costimulates T cells via the binding of
B7-H3.
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measured by ELISA. The cpm counts and IFN-� production for CD8� or CD4� T
cells stimulated with anti-CD3 mAb alone and CD8� or CD4� T cells cocultured
with P815 cells in the absence of anti-CD3 mAb were �2,500 cpm and � 0.015
ng/ml, respectively. Values shown are the mean � SD. The data are represen-
tative of three independent experiments. (C ) TLT-2 expression on OT-I CD8�

cells (Left). OT-I CD8� cells were stained for TLT-2, as described in Fig. 2C. B7-H3
and B7–1 expression on E.G7 and E.G7 transfectants (Right). E.G7, B7-H3/E.G7,
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IFN-� production (Upper) and cytotoxicity (Bottom) of OT-I CD8� T cells
costimulated with B7-H3-transfectants. OT-I CD8� cells were stimulated with
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IFN-� levels in the supernatants were measured by ELISA. OT-I CD8� T cells
were cocultured with E.G7 or B7-H3/E.G7 for 3 days and cytotoxicity against
E.G7 was measured by the JAM test. Values shown are the mean specific lysis �
SD. The data are representative of three independent experiments. *, statis-
tically different from the WT control (P � 0.05).
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Treatment of Either Anti-B7-H3 or Anti-TLT-2 mAb Attenuates Contact
Hypersensitivity (CH) Responses. To investigate the functions of
B7-H3 and TLT-2 in vivo, we examined the effects on CH
responses to dinitrofluorobenzene (DNFB) by treating with the
anti-B7-H3 or anti-TLT-2 mAb. Administration of the anti-
B7-H3 mAb at sensitization significantly decreased ear swelling,
and this inhibitory effect was found to be long-lasting when
rechallenge was performed at 28 days (Fig. 5A). The total cell
numbers in the draining lymph nodes (LNs) of the mice treated
with anti-B7-H3 mAb at sensitization were significantly de-
creased, and the percentages of T cells and CD8� T cells were
also significantly reduced (Fig. 5B). In addition, IFN-� produc-
tion by LN T cells that responded to dinitrobenzene sulfonate
(DNBS) was markedly inhibited in the anti-B7-H3 mAb-treated
mice. The treatment of anti-B7-H3 mAb at the challenge also
inhibited CH responses. We also examined the effect of admin-
istration of anti-TLT-2 (MIH49) mAb, because the addition of
MIH49 blocked B7-H3 binding to TLT-2 in vitro (Fig. 1C).
Consistent with the treatment with anti-B7-H3 mAb, treatment
with the anti-TLT-2 mAb at either sensitization or challenge
significantly inhibited ear swelling in a long-lasting manner (Fig.
5C). Our results demonstrate that either B7-H3 or TLT-2
contributes positively to the induction and effector phases of CH
reactions and activation of CD8� T cells is preferentially in-
volved in this mechanism.

Discussion
In the present study, we demonstrate a direct and specific
interaction between the B7 family member B7-H3 and the

TREM family member TLT-2. TLT-2 is expressed constitutively
on CD8� T cells and induced on CD4� T cells after activation.
The binding of B7-H3 to TLT-2 on T cells enhances T cell
effector functions, such as proliferation, cytokine production,
and cytotoxicity. The augmentation of T cell activation via the
TLT-2:B7-H3 pathway was particularly prominent in CD8� T
cells. Blockade of the TLT-2:B7-H3 pathway by using mAbs
against B7-H3 or TLT-2 efficiently inhibited both the induction
and effector phases of the CH responses. Our results indicate
that TLT-2 is a counterreceptor for B7-H3, and that the TLT-
2:B7-H3 pathway costimulates T cell activation.

Continuing the observation that the CD28 family member
BTLA interacts with the TNF receptor family molecule
TNFRSF14 (herpesvirus entry mediator, HVEM) (28), we now
show that a CD28-B7 family member binds to another family
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molecule. The TREM cluster includes the genes that encode
TREM-1, TREM-2, and murine TREM-3, as well as the
‘TREM-like’ genes that encode TLT-1, TLT-2, TLT-4, the
human TLT-3 and murine TLT-6 (29). All TREM family
proteins are type I transmembrane glycoproteins that consist of
a single extracellular Ig-like domain of the V-type, a transmem-
brane domain, and a short cytoplasmic domain (30, 31).
TREM-1 is expressed by neutrophils and macrophages and
amplifies inflammatory responses to pathogens. In contrast,
TREM-2 mainly controls the differentiation and development of
other myeloid cells, including DCs, osteoclasts, and microglia
(30). Although research on TREM proteins has focused on
myeloid lineage cells, in the present study, we highlight the
expression and function of TREM family members in T cells.
Consistent with a previous report (27), TLT-2 was expressed
predominantly on B cells and macrophages, although we ob-
served significant expression on freshly isolated unstimulated
CD8� T cells and activated CD4� and CD8� T cells after
short-term stimulation. The augmentation of proliferation and
cytokine production costimulated with B7-H3-transfectants
were consistently observed in both types of T cells that expressed
endogenous TLT-2 and exogenously introduced high levels of
TLT-2 (Figs. 3 and 4). However, the efficacy of B7-H3-mediated
costimulation was more evident for CD8� T cells.

Our results suggest that the TLT-2:B7-H3 pathway costimulates
the activation of T cells, especially CD8� T cells. The efficient
contribution of the B7-H3 pathway to the CD8� T cell responses
has been confirmed by previous reports describing the successful
induction of CTL and antitumor immunity by B7-H3-introduced
tumors (17–20). The study using B7-H3-deficient mice also dem-
onstrated costimulatory function of B7-H3 in both CD4� and
CD8� T cells in acute and chronic allograft rejection (21). However,
as described in the introduction, the coinhibitory function of B7-H3
has also been reported (6, 7, 23, 24). How can we explain the
previous reports of an opposite function of B7-H3 in immune
responses? There may be several possibilities. The first possibility is
the existence of second receptor other than TLT-2. The previous
report (6) demonstrated the involvement of negative function of
B7-H3 in Th1 responses and preferential induction of B7-H3 by a
Th1 cytokine, IFN-�. An undefined negative receptor might be
dominantly induced on Th1 type of CD4� T cells and regulate Th1
responses. Unknown receptor:B7-H3-mediated coinhibitory path-
way may contribute to the negative feedback for TLT-2:B7-H3-
mediated activation of Th1 and CTL responses. A second possibility
is an involvement of regulatory role of IFN-� in Th2 responses.
B7-H3-mediated costimulation in TLT-2-expressing CD8� T cells
initially enhances IFN-� production and this may result in the
regulation of Th2-mediated immune responses. This may account
for the development of severe airway inflammation observed in
B7-H3-deficient mice (6). A third possibility is that TLT-2 ex-
pressed on myeloid cells plays roles in innate immunity and
inflammatory responses. In the present study, we focused on the
functions of TLT-2 expressed on T cells, whereas in reality TLT-2
is broadly expressed on myeloid cells and its ligand, B7-H3, is also
abundantly expressed on various cell types including immune cells
and tissue cells. TLT-2 expressed on myeloid cells may play
different roles in immune responses. Although we observed similar
effects on CH responses by treatment with either anti-B7-H3 or
TLT-2 mAb, we cannot exclude the possibility that B7-H3 ex-
pressed on cells other than antigen-presenting cells, or TLT-2
expressed on myeloid lineage cells, partly contribute to the effects.
The function of TLT-2 expressed on myeloid cells requires further
study.

In summary, we show that TLT-2 is a counterreceptor for
B7-H3, and that the interaction of B7-H3 with TLT-2 on T cells
enhances T cell activation. Among the B7 family of T cell
costimulatory pathways, the B7-H3:TLT-2 pathway appears to
have a unique role in CD8� T cell activation. Although TLT-2

has immune functions other than as a T cell costimulatory
molecule, intervention with B7-H3:TLT-2 may represent a tar-
get for the regulation of immune responses.

Materials and Methods
Mice. Female 6-week-old BALB/c mice were purchased from Japan SLC
(Shizuoka, Japan). OVA-specific TCR transgenic OT-I mice (32) were kindly
provided by W. R. Heath (The Walter and Eliza Hall Institute, Melbourne)
through H. Udono (RIKEN, Yokohama City, Japan). Mice were maintained
under specific pathogen-free conditions and used at 6–10 weeks of age. All
mouse procedures were reviewed and approved by the Animal Care and Use
Committee of Tokyo Medical and Dental University.

Homology Search and TLT-2 Plasmids. BLASTp search of the NCBI database for
amino acid homologies to CD28 family molecules identified several candidates
based on the EST expression profiles. The cDNAs for these candidate molecules
were amplified from BALB/c splenocytes by using RT-PCR, ligated into pCR2.1-
TOPO vector (Invitrogen), and sequenced. cDNAs were inserted into pMXs-IG
and pMXs-neo to generate TLT-2/pMXs-IG and TLT-2/pMXs-neo, respectively.
TLT-2 was retrovirally transduced as described in SI Materials and Methods.

Anti-CD3 mAb-Induced Costimulation Assay. DO11.10 cells (1 � 105 per well),
freshly isolated T cells (2 � 105 per well) or retrovirally transduced GFP� T cells
(1 � 105 per well) were cocultured with mitomycin C-treated WT P815 or
B7-H3/P815 cells at the indicated R/S ratios in the presence of anti-CD3 mAb
(145–2C11) in 96-well flat-bottom plates for 1 day (for DO11.10 cells) or 2–3
days (for T cells). For the measurement of proliferative responses, the cultures
were pulsed with [3H]thymidine for the final 18 h of culture and the incorpo-
rated radioactivity was measured by using a microplate beta counter, as
described previously (33). Culture supernatants were collected at the indi-
cated time-points, and the IL-2 and IFN-� levels were measured by ELISA, as
described previously (33).

IFN-� Production and CTL Assay for OT-I Cells. OT-I CD8� T cells (1 � 105 per well)
were stimulated with a graded ratio of mitomycin C-treated E.G7 (control),
B7-H3/E.G7 or B7–1/E.G7 cells, the culture supernatants were collected after
48 h, and IFN-� production was measured by ELISA. The cytotoxicity of OT-I
CD8� T cells for E.G7 cells was measured by the 6-h JAM test described
previously (34). Briefly, OT-I CD8� T cells were cocultured with mitomycin
C-treated E.G7 or B7-H3/E.G7 cells for 3 days and the harvested CD8� T cells
were used as effector cells. The E.G7 cells were labeled with [3H]thymidine and
then used as target cells (5 � 103 per well). The incorporated radioactivity was
measured.

Contact Hypersensitivity (CH) Reaction. CH to DNFB was induced as described
previously (35). Briefly, 20 �l of 0.5% DNFB (Sigma) dissolved in acetone:olive
oil (4:1) was painted onto shaved abdominal skin on days 0 and 1, followed on
day 5 by the application of 20 �l of 0.2% DNFB to both sides of the ear. Ear
thickness was measured before challenge and 24, 48, and 72 h after challenge.
For the antibody treatments, mice received i.p. injections of 200 �g per mouse
of control rat IgG (MP Biomedicals), rat IgM (MP Biomedicals), anti-B7-H3
(MIH35) mAb or anti-TLT-2 (MIH29) mAb, 2 h before each sensitization or
challenge. The secondary challenge (rechallenge) was performed 28 days after
the primary challenge.

LN cells were collected from the draining LN (inguinal, cervical, and axillary
lymph nodes) of control Ig- or anti-B7-H3 mAb-treated sensitized mice 3 days
after the final sensitization. LN cells were analyzed by flow cytometry. To
measure the T cell responses to DNFB, LN T cells were purified by using the
MACS separation system with biotinylated anti-B220, anti-MHC class II and
anti-CD49b mAbs followed by streptavidin-microbeads (Miltenyi Biotec). Pu-
rified LN T cells (2 � 105 per well; �97% CD3� T cells) were cocultured with
DNBS-pulsed splenocytes as described previously (36). IFN-� production after
3 days of culture was measured by ELISA.

Statistics. Statistical analysis was performed by using the Student’s t test and
Mann–Whitney U test for in vitro and in vivo analyses, respectively. Values of
P � 0.05 were considered significant.
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