科学研究費補助金研究成果報告書

平成21年4月30日現在

研究種目:若手研究(A)				
研究期間:2007~2008				
課題番号:19686020				
研究課題名(和文) 超高周波対応高機能ハイブリッドナノクラスターの創製				
研究課題名(英文) Development of highly functionalized hybrid nano-cluster for ultra-high frequency range				
研究代表者				
小川 智之(OGAWA TOMOYUKI)				
東北大学・大学院工学研究科・助教				
研究者番号:50372305				

研究成果の概要:

磁性ナノ粒子をコアとし、シェル層でその表面を覆ったハイブリッドナノクラスターを中心 に、新たな磁性複合材料の構築と GHz 帯域高周波駆動デバイスへの応用展開の可能性を探った。 理論的検討から、超常磁性ナノ粒子の GHz 帯域の高周波駆動を新たに提案し、Fe ナノ粒子によ る実験的に実証を行った。また、高酸化耐性に優れた Fe コアー貴金属シェル型ハイブリッドナ ノクラスターの合成技術の獲得や、高充填均一分散型磁性ナノ粒子複合材料を意図したシェル 層厚の制御に成功した。

交付額

			(金額単位:円)
	直接経費	間接経費	合 計
2007年度	10, 700, 000	3, 210, 000	13, 910, 000
2008年度	9, 200, 000	2, 760, 000	11, 960, 000
年度			
年度			
年度			
総計	19, 900, 000	5, 970, 000	25, 870, 000

研究分野:工学

科研費の分科・細目:電気電子工学・電子・電気材料工学

キーワード:磁性ナノ粒子、コアーシェル、ハイブリッド、自己組織化、高周波デバイス

1. 研究開始当初の背景

あらゆる情報が双方向にかつ瞬時に世界 的規模でやりとりされるユビキタスネット ワーク社会実現において、高速情報通信シス テムに対応した低消費電力の小型通信機 器・メモリデバイスのひとつとして、GHz 高周波帯域に対応した低消費電力型小型ア ンテナが切望されている。現在、アンテナ材 料に用いられる誘電体の誘電率ならびにア ンテナ形状制御のみで特性向上が試みられ ているが、さらなる低消費電力化・ワイドバ ンド/マルチバンド化のためには、誘電率制 御やデバイス形状の最適化のみでは限界が 指摘されている。これに対し、近年、デバイ ス特性が誘電率のみならず透磁率にも依存 することに着目し、透磁率制御の概念を積極 的に導入した磁性体/誘電体ハイブリッド 材料が注目を集めている。しかしながら、磁 性薄膜・磁性粉体を用いたハイブリッド材料 では現在まで実現には至っておらず、誘電率 と透磁率の制御が可能な高機能ハイブリッ ド材料の構築が急務となっている。本研究で は、ナノサイズ化した磁性材料(磁性ナノ粒 子)を誘電体材料中に分散させた磁性ナノ粒 子/誘電体ハイブリッド材料を提案し、特に、 異種材料の融合を可能とするコアーシェル

型のハイブリッドナノクラスターに着目し、 磁性ナノ粒子/誘電体ハイブリッドナノク ラスター集合体を形成することで透磁率・誘 電率独立制御可能な高機能ハイブリッド材 料の構築を行う。コアーシェル構造は有機材 料・無機材料間わず何層もの異種材料とのハ イブリッド化を可能とし、ナノスケールでコ ア径およびシェル層厚を制御することが期 待できる。さらに、強磁性/反強磁性とのコ アーシェル構造では界面で新たに生じる交 換磁気異方性を付与することが可能であり、 コアーシェル型ハイブリッドナノクラスタ ーが従来にはない新たな高機能ハイブリッ ド材料実現の可能性を期待させるものであ る。以上の経緯を踏まえ、本研究では、次世 代の高周波デバイスへの応用を念頭に、遷移 金属を中心とした磁性金属ナノ粒子を誘電 体中に均一分散させた高機能磁性ナノ粒子 /誘電体ハイブリッド材料実現のための要 素技術開発を行う。

2. 研究の目的

GHz 帯域に対応した低損失配線ボード基板 材料およびワイドバンド/マルチバンドア ンテナ材料への応用を念頭に、Fe ベースの金 属あるいは Fe 酸化物をナノ粒子化し、各種 機能を有するコアーシェル型ハイブリッド ナノクラスターを誘電体中に凝集なく均一 に分散させた高機能磁性ナノ粒子/誘電体 ハイブリッド材料に関する要素技術開発を 行う。特に、(1)超高周波動作化、(2)磁性ナ ノ粒子の酸化防止、および(3)誘電体中への 高密度均一分散化、が必要不可欠となる。本 研究では、高機能コアーシェル型ハイブリッ ドナノクラスターの液相合成プロセスの確 立を行うとともに、誘電体中への高密度均一 分散プロセスの確立を目的とする。

3. 研究の方法

(1)超高周波動作化

磁性材料が GHz 帯域の電磁波に損失なく 応答するには共鳴周波数の高周波化、つまり、 磁気異方性の誘起が必須となる。このため、 材料本質の磁気異方性のみならず、超常磁性 の原因となる熱磁界、反磁性/強磁性界面で 生じる一方向異方性磁界を付与するなど、あ らゆる磁気異方性制御手法を考慮し、ナノメ ートルオーダーで精密に創り込むことが重 要となる。

本研究では、まず、粒径のナノサイズ化に よって発現する超常磁性の高周波特性につ いて(Landau-Lifshitz-Gilbert方程式:LLG 方程式)を用いた理論計算および実験的検証 を行った。次に、反強磁性コア/強磁性シェ ル型のナノ粒子について、一方向磁気異方性 等の評価を通して、再現性の高い直接合成技 術の構築を行った。

(2)磁性ナノ粒子の酸化防止

磁性金属ナノ粒子を用いた高機能電子デ バイスでは、粒子の表面酸化の防止は必須で ある。本研究では、Feナノ粒子をコアとし、 酸化耐性に優れた Pt, Auの貴金属をシェル としたコアーシェル型ハイブリッドナノク ラスターに着目し、独自に構築したコアーシ ェル粒子の歩留まり評価技術を通して、高酸 化耐性を有するハイブリッドナノクラスタ ーの実現を試みた。

(3)誘電体中への高密度均一分散化

透磁率を積極活用した高周波デバイス用 ハイブリッド材料を想定した場合、正味の透 磁率を向上し、かつ、個々のナノ粒子の特性 を有効に引き出すため、磁性ナノ粒子を高密 度にかつ均一分散させる必要がある。このよ うなナノ粒子集合体形成技術のひとつとし て、集合体形成後にシェル層が母相の役割を 果たすことを念頭に、シェル層厚の均一かつ 極薄化制御を行った。コア粒子として、球状 かつ粒径 5.0nm~15.0nm まで粒径制御した均 一粒径マグネタイトナノ粒子を用い、逆ミセ ル法を用いてシリカシェル層を形成した。主 に、反応溶液総量に対するシリカ層原材料の 濃度と反応時間の最適化によってシリカ層 厚の制御を試みた。

- 4. 研究成果
- (1) 超高周波動作化

磁性ナノ粒子を用いたGHz 帯域対応高 周波デバイスを念頭とした場合、高透磁率化 を実現するための高飽和磁化材料を用い、動 作周波数上限となる磁気共鳴周波数をGHz 帯域まで高めることが重要となる。これまで、 高飽和磁化材料として Fe を選択し、高共鳴 周波数化実現のためにナノサイズ化するこ

図.1 粒径が異なる磁性ナノ粒子集合体の 複素透磁率の周波数依存性.

図.2 ブロッキング共鳴周波数と熱磁界との関係.プロットは図.1 から得られた実験値.

とで発現する超常磁性状態を適用すること を提案してきた。特に、高共鳴周波数化に関 して数値計算手法(Landau-Lifshitz-Gilbert 方程式:LLG方程式)を用いて詳細に検討し、 実験的検証を行ってきた。

図.1 に、粒径が異なる Fe_3O_4 ナノ粒子集合体および Fe ナノ粒子集合体の複素透磁率の周波数依存性を示す。粒径が 17.2nm から 3nm まで減少すると、超常磁性一強磁性転移を示すブロッキング共鳴周波数 f_6 (図中矢印)は~1MHzから~4GHz まで高周波化する傾向を示している。特に興味深いのは、粒径 3nm の Fe ナノ粒子における~4GHz のブロッキング共鳴は、バルク Fe の結晶磁気異方性磁界(H_k ^{int})から見積もられる強磁性共鳴周波数(~1.5GHz)より高周波化している点にある。

このような超常磁性ナノ粒子における GHz 帯高周波駆動は、2kOe にも達する熱磁界(*H*) による実効的な磁気異方性の増大によるも のと考えられる。LLG 方程式による数値計算 に基づき、ダンピング定数 $\alpha \epsilon \alpha = 0.1 \sim 1$ およ び $H_k^{int} = 10 \sim 1000 Oe \epsilon Gc 定すると、ブロッ$ キング共鳴周波数は熱磁界に対して図.2 の実線および破線のように振る舞うことが分かっている。図.1 に示す Fe₃O₄および Fe ナ $ノ粒子のブロッキング共鳴周波数は、<math>\alpha$ =0.22 を仮定すると数値計算結果と良い一致 を示すことが分かる。

以上の検討結果より、超常磁性ナノ粒子集 合体は GHz 帯域までの高周波駆動が可能で あることを実証しており、新たな高周波デバ イス用材料となる可能性を秘めていること を示唆するものである。

一方、Fe 原子を含む有機金属錯体を独自に 合成し、それを 300℃近傍で熱分解を行った。 反応時間や反応温度を系統的に変化させ、生 成したナノ粒子の形態および磁気特性を詳

図.3 Fe コア・Pt シェル型ハイブリッドナ ノクラスターの TEM 像

図.4 Fe コア・Pt シェル型ハイブリッドナ ノクラスターのX線回折結果.

細に検討した。その結果、生成したナノ粒子 は立方体形状(ナノキューブ)をしており、 粒径を 9nm, 16nm, 22nm と制御することに成 功した。また、40k0eの磁場下で5Kまで磁場 中冷却後の磁化曲線は、原点から負方向に 3k0e 程度シフトした一方向磁気異方性を有 している。また、一方向磁気異方性は 200K 近傍で消失する。これは、個々のナノ粒子内 に反強磁性成分が含まれていることを示し ており、合成したナノキューブがウスタイト 相(Fe0)とマグネタイト相(Fe₃0₄)の二相か らなることを示唆している。これらの二相複 合構造の描像は、X線回折および電子線回折 の結果からも支持される。さらに、磁気異方 性磁界と磁気共鳴周波数との関係から、3k0e 程度の一方向磁気異方性磁界は、GHz 帯域ま で高周波応答を実現する可能性を秘めてお り、将来的に反強磁性/強磁性のコアーシェ ル型ハイブリッドナノクラスターが高周波 デバイス対応の新たな磁性材料となること が期待される。

(2)磁性ナノ粒子の酸化防止

還元法あるいは熱分解法を用いて Fe ナノ 粒子を合成後、Pt 原材料を投入し反応温度お よび反応時間の最適化を行うことにより、Pt シェルの形成を試みた。

図3に、Fe コアーPt シェル複合型スピン ナノクラスターの TEM 像および図4に粉末 状のFe コアーPt シェル型ハイブリッドナノ クラスターのX線回折結果を示す。比較とし て、シェル層のないFe ナノ粒子のX線回折

図.5 Fe コアーPt シェル複合型ハイブリッド ナノクラスターの磁気ヒステリシス曲 線. 挿図は低磁場における拡大図.

図.6 大気暴露後の Fe コアーPt シェル型ハイ ブリッドナノクラスターの磁化の時間 依存性.磁化は 10 kOe 印加時の値を大 気暴露前の値で規格化してある.

結果も併せて示している。これより、通常の Fe ナノ粒子では容易に酸化するため、酸化鉄 に起因する回折ピークが観測されているが、 Fe コアーPt シェル型ハイブリッドナノクラ スターでは Pt シェル層により酸化が抑制さ れ Fe に起因する回折ピークが明瞭に観測さ れている。結果として、大気開放後 10 時間 程度経過しても Fe ナノ粒子は酸化しないで 安定して存在していることが分かった。

図5にFeコアーPtシェル型ハイブリッド ナノクラスターの磁化曲線を示す。これより、 800 Oe 程度の保磁力が観測され、シェル層 無しのFeナノ粒子の場合に比べ数十%大き くなっている。これはシェル形成段階におい てFeコアとPtシェルとの界面において高磁 気異方性を示すFe-Pt合金相の形成によるも のと考えられる。また、図6に外部磁場10 kOe中におけるFeコアーPtシェル型ハイブ リッドナノクラスターの大気解放後の磁化 の時間依存性を示す。これより、Ptシェル形 成後、永久磁石を用いて磁気分離を行ったFe

図.7 様々なシェル層厚(a)0nm, (b)3.0nm, (c)8.0nm, (d)12nm を有する Fe3O4 コ ア SiO2 シェル型ハイブリッドナノク ラスターの TEM 像.

図.8 粒子間距離を 0nm(図中P)、13.5nm 同S3)、31.5nm(同S12)と変化させた時の、磁場中冷却後の磁気モーメントの温度依存性.黒色と赤色プロットは、それぞれ、降温時と昇温時であり、降温じには30Kと70Kで温度を一定時間保持している.

コアーPt シェル型ハイブリッドナノクラス ターでは、時間に依存しないで一定の磁化を 持っている。これは Fe コアの表面酸化がほ ぼ完全に抑制されていることを示唆する。 方、磁気分離を行わない Fe コアーPt シェル 型ハイブリッドナノクラスターにおいて体 積換算で 10%程度酸化していることが分か った。これらの結果から、酸化抑制のための 技術指針を獲得することに成功している。本 手法では、原材料を還元して Pt を析出させ るため、Fe コア表面のみで析出するばかりで なく、反応溶液中に Pt のみが析出し余剰 Pt ナノ粒子が生成される可能性がある。また、 Fe コア表面を Pt で覆った場合でも、Pt 層の 欠陥 (クラック) や Fe コアを中心として Pt 層が成長しない偏った成長様式などの可能 性が考えられる。このため、コアーシェル型 スピンナノクラスター形成の合成再現性に

乏しく、酸化抑制効果にばらつきが生じてい ると考えられる。

一方、Fe に対し非固溶で耐酸化性に優れた Au に着目し、界面における合金形成を抑制し つつ耐酸化性にすぐれた Fe コアーAu シェル ハイブリッドナノクラスターの合成を試み た。還元法により鉄ナノ粒子を合成後、極少 量の水溶系金原材料を加え、溶液の酸性/ア ルカリ性を制御する添加剤を加えることで シェルを形成した。また、独自に開発したコ ア選択エッチング法ならびに蛍光X線分光法 を利用した鉄元素選択重量評価法を用いて 鉄コアー金シェルハイブリッドナノクラス ターの歩留まりを評価した。その結果、現段 階における最適なシェル形成条件において 10%-50%程度の歩留まりで鉄コアー金シェル ハイブリッドナノクラスターの合成に成功 していることが分かった。

(3)誘電体中への高密度均一分散化

原材料の希薄濃度および長時間合成により、図7に示すように、7.5nmコア粒径を有するマグネタイトナノ粒子の周囲に3.0nm、8.0nm、12.0nmまで均一にシリカシェル層厚を変化させたコアーシェル型ハイブリッドナノクラスターの合成に成功した。また、合成したハイブリッドナノクラスターをプレス成型し、体積充填率8%程度の高充填ナノ粒子集合体を得ることに成功した。

シリカ層厚を系統的に変化させたハイブ リッドナノクラスター集合体に対し、零磁場 冷却後及び磁場中冷却後の磁化率の温度依 存性の詳細な検討を行った。ブロッキング温 度はシェル層厚に依存し、シェル層厚の減少 に伴い高温化することが分かった。これは、 マグネタイトナノ粒子間で働く磁気双極子 相互作用によって磁化反転に要するエネル ギー障壁が実効的に増大していることを意 味している。磁気双極子相互作用の存在は、 零磁場中冷却後の磁化にメモリ効果が観測 されていることからも支持され、高密度均一 分散ハイブリッドナノクラスター集合体の 磁気特性が孤立した超常磁性ナノ粒子とは 異なる振る舞いを示すことを示唆している。

5. 主な発表論文等

〔雑誌論文〕(計12件)

1. "Achieving a Non-interacting Magnetic Nanoparticle System through Direct Control of Interparticle Spacing", H. Yang, D. Hasegawa, M. Takahashi and <u>T. Ogawa</u>, *Appl. Phys. Lett.*, 査読有, **94**, 013103-1-013103-3 (2009).

2. "Challenge of ultra high frequency limit of permeability for magnetic nanoparticle assembly with organic polymer - Application of Superparamagnetism -" (invited), D. Hasegawa, H. Yang, M. Takahashi and <u>T. Ogawa</u>, *J. Magn. Magn. Mater.*, 查読有, **321**, 746-749 (2009). 3. "Room temperature ferromagnetism in diluted magnetic semiconductor Zn_{1-x}Cr_xTe nanoparticles synthesized by chemical method", Y. Niwayama, H. Kura, T. Sato, M. Takahashi, and <u>T. Ogawa</u>, *Appl. Phys. Lett.*, 查読有, **92**, 02502-1-202502-3 (2008).

 "Gram-scale synthesis of monodisperse Fe nanoparticles in one pot", H. Yang, D. Hasegawa, S. Ozaki, T. Sato, M. Takahashi and <u>T. Ogawa</u>, *Scripta Materialia.*, 查読有, **58**, 822-825 (2008).
 "Facile large-scale synthesis of monodisperse Fe nanoparticles by modest-temperature decomposition of Fe(CO)₅", H. Yang, F. Ito, D. Hasegawa, <u>T. Ogawa</u>, and M. Takahashi, *J. Appl. Phys.* 查読有, **101**, 09J112-1-09J112-3 (2007).

〔学会発表〕(計 25 件)

1.「超常磁性ナノ粒子集合体形成とその高周波 磁気特性」【依頼講演】,小川智之、高橋研,日 本磁気学会 第163回研究会、2008年12月4日 (中央大学駿河記念館、東京)

2. "Fast Superparamagnetic Response of Mono-Dispersed Fe Nanoparticle Assembly", <u>**T.**</u> <u>**Ogawa**</u>, H. T. Yang, D. Hasegawa, and M. Takahashi, 53rd Annual Conference on Magnetism and Magnetic Materials (MMM 2008), Austin, USA, 12 November 2008.

3. "Challenge of ultra high frequency limit of permeability for magnetic nanoparticle assembly with organic polymer" ~ Application of Superparamagnetism ~ (invited), M. Takahashi, D. Hasegawa, and <u>**T. Ogawa**</u>, Moscow International Symposium on Magnetism (MISM-2008), Moscow, Russia, 23 June 2008.

4. "Monodisperse Magnetite Nanocubes: synthesis, phase transfer, magnetic properties", H. Yang, <u>**T. Ogawa**</u>, D. Hasegawa, and M. Takahashi, 52nd Annual Conference on Magnetism and Magnetic Materials (MMM 2007), Tampa, USA, 8 November 2007.

5. "Tailor-Made Nano Structured Materials for Highly Qualified Spin Related Devices" – Exchange Coupling and Spin Dynamics -(invited), M. Takahashi, M. Tsunoda, S. Saito, and **T. Ogawa**, The 7th IEEE International Conference on Nanotechnology (IEEE-NANO 2007), Hong Kong, China, 3 August 2007.

6. "Effect of magnetostatic interaction on susceptibility of superparamagnetic Fe nanoparticles in nonmagnetic matrix", <u>T. Ogawa</u>, F. Ito, D. Hasegawa, H. Yang, and M. Takahashi, The 1st International Symposium on Advanced Magnetic Materials and Applications (ISAMMA 2007), Jeju, Korea, 30 May, 2007 〔産業財産権〕
○出願状況(計1件)
名称:磁性ナノ粒子の飽和磁化向上
発明者:小川智之 他3名
権利者:東北大学、太陽誘電㈱
種類:特許
番号:特願 2007-233739
出願年月日:2007年9月10日
国内外の別:国内

〔その他〕特になし。

6.研究組織
 (1)研究代表者
 小川 智之(OGAWA TOMOYUKI)
 東北大学・大学院工学研究科・助教
 研究者番号:50372305

(2)研究分担者

(3)連携研究者