科学研究費補助金研究成果報告書

平成21年6月18日現在

研究種目:若手研究(B)研究期間:2007~2008

課題番号:19790043

研究課題名(和文) 固形腫瘍に対する光線力学療法剤を志向した活性酸素発生物質の開発

研究課題名(英文) Development of ROS (Reactive Oxygen Species) Generating Agents for

Photodynamic Therapy

研究代表者

中西 郁夫 (NAKANISHI IKUO)

独立行政法人放射線医学総合研究所・重粒子医科学センター・主任研究員

研究者番号:70356137

研究成果の概要:低酸素状態の固形腫瘍に有効な光線力学療法剤を開発する目的で、非酸素存在下、ピリジンルオキシド構造を有する化合物を光電子移動還元し、その活性酸素種生成反応について検討した。その結果、ニトロ基などの電子求引性置換基を有するピリジンルオキシドの一電子還元体は比較的安定であるのに対し、無置換のピリジンルオキシドの場合には、N-0結合が開裂してヒドロキシルラジカルを生成することがわかった。以上の知見に基づき、新規化合物の設計を行った。

交付額

(金額単位:円)

			(35.45) 12. • 47
	直接経費	間接経費	合 計
2007年度	2, 200, 000	0	2, 200, 000
2008年度	1, 100, 000	330, 000	1, 430, 000
年度			
年度			
年度			
総計	3, 300, 000	330, 000	3, 630, 000

研究分野:生命物理化学

科研費の分科・細目:薬学・物理系薬学

キーワード:癌・薬学・有機化学・活性酸素種・放射線・ラジカル・光線力学療法・反応機構

1. 研究開始当初の背景

生体内で活性酸素種を発生して DNA 切断活性を示す化合物は、発がんや老化のメカニズムを解明する上で重要であるばかりでなく、がん細胞の DNA を選択的に損傷させることができれば、がんの治療薬として応用できる可能性があり、非常に興味深い。特に光非照射下では生体毒性をまったく示さず、光照射下でのみ活性酸素種を発生し、DNA 切断活性を発現する化合物は、がんの光線力学療法に応用できるため、近年、国内外で活発な研究が行われている(Armitage, B. Chem. Rev. 1998,

98, 1171)。光は、その強度や波長の制御が容易で非常に扱いやすく、化合物固有の吸収波長の光を照射することで、選択的に活性の高い励起状態をつくりだすことができる。特に、400 nm以上の可視光領域に吸収をもつ化合物は、照射光が生体組織に吸収されずに生体内深部まで到達できるため、光線力学療法剤として極めて有用であると考えられる。しかし、これまで可視光照射により高量子収率で活性酸素を発生し、効率良い DNA 切断活性を示す化合物の報告例は少ない。特に、進行がんの固形腫瘍は低酸素状態にあるため、酸

素非存在下でも活性酸素を生成できる化合物が望まれているが、その例は極めて少ない(Brown, J. M. Cancer Res. 1999, 59, 5863)。一方、放射線も生体深部にまで到達できるため、放射線照射によって活性酸素種を生成する化合物もがんの治療薬となり得る。そこでも、研究代表者がこれまで行うって活性酸素種生成と消去のスピントラッとには、酸素非存在下で可視光照射または放射線照射することによって高効率で活性酸素種を生成し、DNA 切断活性を示す化合物を開発し、低酸素状態にある固形腫瘍に対するがん光線力学療法剤への応用を目指す。

2. 研究の目的

低酸素状態にある固形腫瘍に対する光線 力学療法剤を開発する目的で、酸素非存在下、 可視光照射または放射線照射することによ って高効率で活性酸素種を発生して DNA 切断 活性を示す化合物を開発する。開発する化合 物の基本骨格として、ピリジン ルオキシド化 合物に着目する。ピリジン N-オキシド化合物 は、一電子還元すると N-0 結合が開裂し、活 性酸素の中でももっとも強力な酸化力をも つヒドロキシルラジカル('OH)を生成し、DNA 切断活性を示すと言われている。しかし、OH 生成の実験的な証拠はまだ報告されていな い。そこで本研究では、ピリジン ルオキシド 化合物による DNA 切断の活性種は何かを調べ る目的で、まず、種々の置換基を有するピリ ジン N-オキシド(RPy0)の一電子還元体の反 応挙動を分子論的に明らかにし、RPy0の一電 子還元に対する構造-反応性相関のライブラ リを構築する。次に、生体内における還元剤 であるジヒドロニコチンアミドアデニンジ ヌクレオチド(NADH)のモデル化合物を用い、 RPyO の光還元反応について検討する。さらに 得られた知見に基づき、分子内に RPyO 部位 および NADH モデル部位の両方を有する新規 化合物を合成し、光反応挙動および光 DNA 切 断活性について検討する。また、放射線照射 により水から発生する水和電子によるピリ ジン N-オキシド化合物の還元反応および活 性酸素生成反応についても検討する。

3. 研究の方法

(1) 種々の置換基RをもつピリジンN-オキシド (RPyO; R = MeO, Me, H, CN, NO₂, etc.) の一電子還元電位 (\mathcal{E}'_{red}) は、酸素非存在下、ALS 630A 電気化学アナライザーを用いてサイクリックボルタモグラム (CV) を測定することにより決定した。対応する一電子還元体ラジカルアニオン (RPyO⁻) が不安定で、可逆なCV が得られなかった場合には、第二高調波交流ボルタンメトリー (SHACV) 法により \mathcal{E}'_{red} 値を決定した。

- (2) RPyO の一電子還元体を得るための RPyO と NADHモデルとの光反応は、アジレント 8453 フォトダイオードアレー分光光度計および 島津製作所 RF-5300PC 分光蛍光光度計を用い、紫外可視吸収スペクトル変化で追跡した。
- (3) ラジカル中間体の検出およびキャラクタリゼーション、スピントラッピング法による活性酸素種の検出には、日本電子JES-ME-LX型 X バンド電子スピン共鳴(ESR)測定装置を用いた。

4. 研究成果

(1) 種々の置換基RをもつピリジンN-オキシド (RPy0; R = Me0, Me, H, CN, NO2, etc.) (図 1)の一電子還元電位 (\mathcal{B}'_{red})を決定するため、酸素非存在下、サイクリックボルタンメトリー法により RPy0 のサイクリックボルタモグラム (CV)を測定した。その結果、 $R=NO_2$ などの電子求引性置換基をもつ RPy0 は、無置換の Py0 (R = H)に比べて高い \mathcal{B}'_{red} 値をもつことがわかった。以上の結果から、ピリジンN-オキシドの置換基Rを変えることにより、その酸化還元特性を精密に制御できることがわかった。

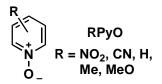


図 1. ピリジン № -オキシド

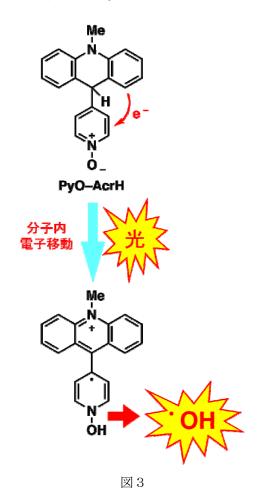

- (2) RPy0 の一電子還元体を得るために、酸素非存在下、25°Cで、RPy0 とジヒドロニコチンアミドアデニンジヌクレオチド (NADH) モデルである 1-ベンジル-1, 4-ジヒドロニコチンアミド (BNAH) (図 2) との光反応を行った。その結果、RPy0 は対応するラジカルアニオンRPy0 に還元されることがわかった。R=H の場合には、ラジカルアニオンが極めて不安定であるのに対し、 $R=NO_2$ の場合には、 NO_2Py0 を電子スピン共鳴 (ESR) 法で直接検出することができ、その ESR スペクトルの超微細構造から NO_2Py0 の詳細な電子構造を明らかにすることができた。
- (3) RPy0 と BHAN との光反応で生成した RPy0 による活性酸素種生成の反応性を DMP0 (5,5-dimethyl-1-pyrroline N-oxide) によるスピントラッピング法で検討した。その結果、R=H の場合には、DMP0-OH に特徴的な ESR シグナルが観測され、HPy0 から効率良くヒドロキシルラジカルが生成することがわかった。一方、 NO_2Py0 は比較的安定なため、ヒドロキシルラジカルの生成は観測さ

図2. NADHモデル

れなかった。

(4) RPy0の一電子還元剤として、ジヒドロニコチンアミドアデニンジヌクレオチド (NADH)のモデル化合物である 10-メチル-9,10-ジヒドロアクリジン(AcrH₂)(図2)の光酸化反応挙動について検討し、AcrH₂が光照射により優れた還元剤として作用することを確認した。

(5) RPy0 部分と AcrH₂ 部分を共有結合で連結した新規化合物 Py0-AcrH を設計した(図3)。 Py0-AcrH に光照射すると、AcrH の励起状態から Py0 部分に分子内電子移動が起こり、Py0 は一電子還元されると考えられる。生成したPy0 の一電子還元体は上述のように N-0 結合の開裂を受け、活性酸素種の中でも最も酸化力が強いヒドロキシルラジカル('OH)を生成すると考えられる。

Py0-AcrH の合成については、引き続き現在検討中であるが、Py0-AcrH が合成できれば、非酸素存在下でも光照射することにより高効率で活性酸素種を発生するがん光線力学療法剤の候補物質を開発できると考えられる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者には下線)

〔雑誌論文〕(計4件)

- ① 松本謙一郎、岡城 彩、永田 桂、William G. DeGraff、乳井美奈子、上野恵美、<u>中西郁夫</u>、小澤俊彦、James B. Mitchell、Murari C. Krishna、山本晴彦、遠藤和豊、安西和紀、Detection of Free Radical Reactions in an Aqueous Sample Induced by Low Linear-Energy-Transfer Irradiation, *Biol. Pharm. Bull.*, 32, 542-547 (2009) 查読有
- ② 岡城 彩、宇井伊織、Sushma Manda、<u>中西郁夫</u>、松本謙一郎、安西和紀、遠藤和豊、Intracellular and Extracellular Redox Environment Surrounding Redox-Sensitive Contrast Agents under Oxidative Atmosphere, *Biol. Pharm. Bull.*, **32**, 535-541 (2009) 查読有
- ③ Sushma Manda、<u>中西郁夫</u>、大久保 敬、薬丸晴子、松本謙一郎、小澤俊彦、伊古田暢夫、福住俊一、安西和紀、Nitroxyl Radicals: Electrochemical Redox Behaviour and Structure-Activity Relationships, Org. Biomol. Chem., 5, 3951-3955 (2007) 查読有
- ④ Sushma Manda、<u>中西郁夫</u>、大久保 敬、川島知憲、松本謙一郎、小澤俊彦、福住俊一、伊古田暢夫、安西和紀、Effect of Solvent Polarity on the One-Electron Oxidation of Cyclic Nitroxyl Radidals, *Chem. Lett.*, **36**, 914-915 (2007) 查読有

〔学会発表〕(計4件)

- ① <u>中西郁夫</u>、抗酸化物質が関与するフリーラジカル反応のメカニズム解明に体する物理化学的アプローチ、第23回日本酸化ストレス学会関東支部会、2008年12月13日、横浜
- ② 松本謙一郎、<u>中西郁夫</u>、遠藤和豊、安西和紀、Free Radical Reactions in an Aqueous Sample Caused by Heavy-Ion (Carbon) Beam Irradiation, 15th Annual Meeting of the Society for Free Radial and Medicine, 2008年11月19-23日、米国インディアナポリス
- ③ <u>中西郁夫</u>、電子スピン共鳴(ESR)法を用いた生体関連酸化還元反応機構の解明、第

- 47 回電子スピンサイエンス学会年会、 2008 年 10 月 1-3 日、福岡
- ④ 安西和紀、盛武 敬、松本謙一郎、<u>中西</u><u>郁夫</u>、Kailash Manda、上野恵美、Detection of Heavy-Ion Particle Radiation-Generated Free Radicals and Modification of Their Biological Effects, A Joint Conference of 13th In Vivo EPR Spectroscopy & Imaging and 10th International EPR Spin Trapping/Spin Labeling、2008 年 9 月 28-30 日、福岡

[図書] (計4件)

- ① 中西郁夫、独立行政法人 放射線医学総合研究所、放射線科学、2009年、3ページ
- ② <u>中西郁夫</u>、電子スピンサイエンス学会、電子スピンサイエンス、2009 年、6 ページ
- ③ <u>中西郁夫</u>、宇都義浩、大久保 敬、川島知憲、Sushma Manda、松本謙一郎、堀 均、福原 潔、奥田晴宏、伊古田暢夫、福住俊一、小澤俊彦、安西和紀、International Proceedings、XIV Biennial Meeting of the Society for Free Radical Research International、2009 年、4ページ
- ④ 福原 潔、<u>中西郁夫</u>、電子スピンサイエンス学会、電子スピンサイエンス、2007年、6ページ

6. 研究組織

(1)研究代表者

中西 郁夫 (NAKANISHI IKUO) 独立行政法人放射線医学総合研究所・重粒 子医科学センター・主任研究員 研究者番号:70356137