科学研究費助成事業 研究成果報告書

平成26年6月6日現在

機関番号:12601
研究種目:特別推進研究
研究期間:2009~2013
課題番号:21000002
研究課題名(和文) 最高エネルギー宇宙線で探る宇宙極高現象
研究課題名(英文) Extreme Phenomena in the Universe Explored by Highest Energy Cosmic Rays
研究代表者

福島 正己(FUKUSHIMA, Masaki)
東京大学・宇宙線研究所・教授
研究者番号:30241227
交付決定額(研究期間全体):(直接経費)499,300,000円、(間接経費)149,790,000円

研究成果の概要: 米国ユタ州に宇宙線観測装置テレスコープアレイ(TA)を設置し、極高エネ ルギー宇宙線の観測をおこなった。2014年までの5年間に10¹⁸から10²⁰ 電子ボルト(eV)にいた る宇宙線を約80,000例とらえ、銀河系外の宇宙で発生して地球まで伝搬してくる陽子宇宙線の特 徴をもつことを示した。また10^{19.76} eV 以上の72例には、ある特定の方向から偏って到来する傾 向があることを見出した。今後の観測で発生源の天体を特定し、宇宙空間で粒子が極高エネルギ ーに加速される仕組みの理解をめざす。

研究成果の概要: Ultra-high energy cosmic rays (UHECRs) have been measured by the Telescope Array (TA) experiment installed in Utah, USA. We collected more than 80,000 samples of air showers with energies between 10^{18} and 10^{20} electron Volts (eV) in 5 years of observation. Analyses of these events indicated that they are consistent as being protons of extra-galactic origin, and their arrival directions become strongly anisotropic above $10^{19.76}$ eV. In future observations, we aim to pin down the sourcing astronomical object of UHECRs, and to investigate its acceleration mechanism.

研究分野: 数物系科学

科研費の分科・細目:物理学、素粒子・原子核・宇宙線・宇宙物理

キーワード: 宇宙線・極高エネルギー・宇宙物理・素粒子物理・国際協力・宇宙線の起源

1. 研究開始当初の背景

宇宙線研究所附属明野観測所のAGASA 空気シ ャワーアレイは、2003 年までの13年間の観測 で、エネルギーが10²⁰eVをこえる宇宙線11例 を観測した。10²⁰eVのエネルギーは、極微の 素粒子が、自分の静止質量(m)相当エネルギ ー(E=mc²)の1000 億倍の運動エネルギーを 持つことに相当する。観測された11例は、予 想された数の約6倍にあたり、これらの極高エ ネルギー粒子が何であり、宇宙でどのように 発生するのか、大きな疑問をなげかけた。

研究の目的

極高エネルギーの宇宙線 Ultra- High Energy Cosmic Rays (UHECRs) は、宇宙空間を満たし ている背景放射と衝突してエネルギーを失う ため、ほぼ1.5 億光年(~50 Mpc)以内の近い宇 宙に発生源があると考えられている。TA 実験 では、(1) 宇宙線のエネルギースペクトルを 測定して、その形に背景放射との衝突の痕跡 が残っているかを確かめる。(2)そのような宇 宙線が来た方向に、UHECR 発生源となる特別 な天体を探す。また(3)どのような素粒子(陽 子、電子、原子核、ガンマ線など…)が、そ のような極高エネルギーまで加速されている のかを調べる。

3. 研究の方法

高エネルギーの宇宙線が地球に到来すると、 大気の上層で、窒素や酸素の原子核と衝突し、 核を壊すと同時に数千の新しい素粒子を発生 する。これらの粒子は、さらに衝突と反応を

繰り返して鼠算式に増殖し、10²⁰eVの宇宙線 では、直径約10km、全てあわせると1兆個を超 える粒子の束となって地表に降り注ぐ。これ を空気シャワーと呼ぶが、エネルギーの高い ものは極めて稀で、地表100km²(山手線の内側 くらいの領域)で1年に1例が観測されるく らいの頻度である。

空気シャワーの観測方法には、大きく分けて2 通りある。 第1は地表アレイと呼ばれ、地表 に点々と粒子検出器(図1)を置いて、検出

図 1: TAの地表検出器のうちの1台。1.2km間隔の碁盤目 に507台を置いて、700km²の地表(ほぼ琵琶湖の面積に相 当)をカバーしている。

図2:TAの大気蛍光望遠鏡ステーション。アレイの周り に3つのステーションを置いて内側をみこみ、アレイに 入射した空気シャワーの発達を撮像する。

した粒子の総数から宇宙線のエネルギーを決 める。宇宙線の方向は空気シャワー中の粒子 が検出器をヒットする時間差から決める。粒 子の総数から宇宙線のエネルギーを決める時 に、大規模な simulation 計算に頼らなくて はならないが、広い空の領域を24 時間・365 日安定して観測できる点が強みである。エネ ルギー決定の分解能は約15%、方向決定の分解 能は約1度である。 第2 は大気蛍光法と呼ば れ、空気シャワー中の粒子が大気中で発生す る紫外光の軌跡を望遠鏡で撮像する。この発 光はきわめて微小なので、大口径の反射鏡で 光を集め、カメラには感度の高い光電子増倍 管を使う(図2)。 観測は月がなく晴れて大 気が透明な夜に限られるため、最終的な稼働 率は10%程度になる。望遠鏡感度の絶対較正や 大気透明度の補正がチャレンジングな課題だ が、観測される光の量がエネルギーに比例す るので、simulation 計算に頼らずにエネルギ ーを決められる強みがある。また、大気中で のシャワーの発達の違いから、一次宇宙線の 粒子種(陽子、原子核、ガンマ線など)の情 報が得られる。

図3:テレスコープアレイの検出器配置図。黒い四角が 地表検出器、周辺3か所の緑の四角が大気蛍光望遠鏡ステ ーションである。観測サイトは、北緯39度、平均標高が 1400mの乾燥した荒地で、人工の光汚染がなく望遠鏡によ る観測に最適である。

テレスコープアレイ実験の配置を図3に示す。 地表アレイと望遠鏡を同じ場所に置いて同時 観測を行い、まれな極高エネルギー宇宙線か ら、可能な限り多くの情報を集めて、正しい 測定を行うことを指針として設計している。

4. 研究成果

TA は日本(特定領域科研費:2003-2008)と 米国(国立科学財団 NSF)の予算で建設し、 2008年5月から観測を始めた。現在では韓国、 ロシアとベルギーが加わり、5 カ国・123 人 の研究者が協力して国際共同研究を進めてい る。2009 年からは、本科研費(特別推進研究) によって運用が行われている。

スペクトル:図4は、TA地表アレイの3年間の データを使って得られたエネルギースペクト ルである(発表論文⑤)。横軸はエネルギー の対数とし、縦軸はスペクトルの形状(ベキ) 変化を見やすくするために、エネルギーの

図4:地表アレイによるエネルギースペクトル。黒丸が TA、緑の四角がAGASA、藤色の△がオージェのデータ。

3乗をかけた到来数(流束)の対数としてプ ロットしてある。エネルギーが10^{19.7}eV以上で 流束が急激に減少し、10^{18.7}eVには「窪み」の ような構造が出来ていることがわかる。つぎ の図5は、5年間の観測データを、理論的な予 測でフィットしたものである。(国際シンポ 発表③⑤)

図中の曲線は、銀河系外の宇宙で発生した陽 子宇宙線が、背景放射との衝突でエネルギー を失いながら地球に伝搬して観測されたとし て計算したものである。10^{19.7}eVの急激な流束 の減少は、衝突によって核子共鳴状態が生成 され、その崩壊によってパイ中間子にエネル ギーが持ち去られる事による(GZKカットオ フ:Greisen-Zatsepin-Kuzmin が1966年に予 測した)。10^{18.7}eVの窪み構造は、同じように して電子・陽電子の対生成から生じる。ベス トフィットの曲線は、発生源でのスペクトル がE^{-2.4}に比例し、発生源の強さが(1+Z)^{5.2}に 比例して増加する場合に得られた。同様な形 をもったスペクトルが、HiRes 実験、南米の オージェ観測所でも得られており、AGASA の UHECR 観測数の超過は、測定エネルギーを30% ほど過剰に評価していたためと考えられてい る。(AGASA以外の実験は、TAを含めて、望遠 鏡での直接測定をエネルギー測定の基準とし ている)

到来方向の異方性: 図6にエネルギーが 57EeV(=10^{19.76}eV)以上の72例の宇宙線につ いて、その到来方向をプロットした。

図6:UHECR のスカイプロット(赤道座標)。TAは赤緯 -10度(横破線)より北を測定している。銀河面をGPで、 超銀河面をSGPで示した。GCは銀河中心。

この図から、赤経150度、赤緯40度付近を中心 にして、イベントが集中していることがわか る。詳しい解析によれば、完全に等方的な分 布からこのレベルの集中が起こるのは、10万 分の37(約3.4 σ)の小さな確率である(ArXiv: 1404.5890)。

高エネルギー宇宙線の到来方向はきわめて等 方的で、10¹²eV領域の例外的な異方性でも 0.3%のレベルである。 GZKカットオフをこえ た領域では、全方向平均の数倍に達する強い 異方性が生じていることが、TAの観測によっ て判ってきたことになる。

一方で、イベントの集中する方向には UHECR のソースとして予想される高エネルギー天体 がみつからず、近傍銀河の集中する超銀河面 からも20度程度はなれている。これは説明が むずかしく、今後の観測と理論による解明が 待たれる。

粒子種:TAのスペクトルと異方性の測定から は、UHECRの主成分が重い原子核でなく、陽子 であることが推定されるが、これはTA望遠鏡

図7:Xmaxの分布。図右上の値(18.6-18.8 など)は、 測定エネルギーの対数の範囲。黒の十字が観測データで、 ヒストグラムが陽子と鉄の simulation. 使用したハド ロン反応モデルは QGSJET2-03 である。

によるシャワー発達の最大点 Xmax の測定と も一致する。図7は、 $10^{18.6}$ eVから $10^{19.4}$ eVの4 つの領域で測定したXmaxの分布を、陽子と鉄 原子核のシャワーsimulationと比較したもの である(国際シンポ発表③)。

TAで得られたXmaxの測定値分布は、陽子から 期待される分布とよく一致しており、鉄原子 核としては説明できない。

まとめ:これまでに得られたTAの観測結果は、 「UHECR が銀河系外を起源とする陽子であり、 地球までの伝搬中に背景放射と反応してエネ ルギーを失い、スペクトルにカットオフと窪 みの構造を作る」として矛盾なく説明できる。

また近傍の発生源(~100Mpc以内)が支配的に なり、宇宙磁場による散乱が小さいカットオ フを超えたエネルギーで、宇宙線の強い異方 性がはじめて観測された。今後は、極高エネ ルギーの感度を4倍に増やす TAx4 計画の実 現により、TAがカバーする北天で宇宙線ソー スの特定をめざす。

南天をカバーするオージェ観測所とは、共同 の検出器較正やデータ解析、検出器の交換な どを通して相互検証を行ってきた。今後はこ れをいっそう発展させ、南北全天での UHECR の統一的な理解をめざす。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計14件)

以下の①-⑨の論文は、TA collaboration

としての出版で、共著者は 123 名(日本 74 名,国外 50 名)。<u>福島正己、垣本史雄、荻尾</u> <u>彰一、佐川宏行</u>の4名は、これらの論文の共 著者である。

- ① T. Abu-Zayyada et al., "Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique", accepted by Astropart. Phys. 2014, 査読あり, DOI:10.1016/j.astropartphys.2014.05 .002, arXiv:1305.7273.
- T. Abu-Zayyada et al., "Upper limit on the flux of photons with energies above 10¹⁹ eV using the Telescope Array surface detector", Phys. Rev. D 88, 112005 (2013), 査読あり, DOI:10.1103/PhysRevD. 88.112005.
- ③ T. Abu-Zayyada et al., "CORRELATIONS OF THE ARRIVAL DIRECTIONS OF ULTRA-HIGH ENERGY COSMIC RAYS WITH EXTRAGALACTIC OBJECTS AS OBSERVED BY THE TELESCOPE ARRAY EXPERIMENT", Astrophys. J. 777, 88(8pp), 2013, 査 読あり,

DOI:0.1088/0004-637X/777/2/88.

- ④ T. Abu-Zayyada et al., "The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular mode", Astropart. Phys. 48 (2013) 16-24, 査読あり, DOI:10.1016/j.astropartphys.2013.06.007.
- ⑤ T. Abu-Zayyada et al., "THE COSMIC-RAY ENERGY SPECTRUM OBSERVED WITH THE SURFACE DETECTOR OF THE TELESCOPE ARRAY EXPERIMENT", Astrophys. J. Lett., 768:L1 (5pp), 2013, 査読あり, DOI:10.1088/2041-8205/768/1/L1.
- ⑥ T. Abu-Zayyada et al., "SEARCH FOR ANISOTROPY OF ULTRAHIGH ENERGY COSMIC RAYS WITH THE TELESCOPE ARRAY EXPERIMENT", Astrophys. J. 757:26 (11pp) 2012, 査読あり, DOI:10.1088/0004-637X/757/1/26.
- ⑦ T. Abu-Zayyada et al., "The surface detector array of the Telescope Array experiment", Nucl. Instr. and Methods A689 (2012) 87-97, 査読あり, DOI:10.1016/j.nima.2012.05.079.
- ⑧ T. Abu-Zayyada et al., "The energy spectrum of Telescope Array's Middle Drum detector and the direct comparison to the High Resolution Fly's Eye experiment", Astropart. Phys. 39-40 (2012) 109-119, 査読あり,

DOI:10.1016/j.astropartphys.2012.05.012.

- ⑨ 川名進吾,<u>福島正己</u>,<u>荻尾彰一</u> ほか 12
 名, "Calibration of photomultiplier tubes for the fluorescence detector of telescope array experiment using a Rayleigh scattered laser beam", Nucl. Instr. and Methods A681 (2012) 68-77,査読あり,
 - DOI:10.1016/j.nima.2012.03.011.
- 御 得能久生,<u>福島正己</u>,<u>垣本史雄</u>,<u>荻尾</u> <u>彰一</u>,<u>佐川宏行</u>ほか45名, "New air fluorescence detectors employed in the Telescope Array experiment", Nucl. Instr. and Methods A 676 (2012) 54-65, 査読あり,
 - DOI:10.1016/j.nima.2012.02.044.
- 冨田孝幸, <u>福島正己</u>, <u>佐川宏行</u>ほか 17 名, "The atmospheric transparency measured with a LIDAR system at the Telescope Array experiment", Nucl. Instr. and Methods A 654 (2011) 653-660, 査読あり, DOI:10.1016/j.nima.2011.07.012.
- 得能久生,<u>荻尾彰一</u>,<u>福島正己</u>,<u>垣本</u> <u>史雄</u>,<u>佐川宏行</u>ほか14名, "On site calibration for new fluorescence detectors of the telescope array experiment", Nucl. Instr. and Methods A 601 (2009) 364-371, 査読あり, DOI:10.1016/j.nima.2008.12.210.
- 多米田裕一郎,<u>福島正己</u>,<u>垣本史雄</u>, <u>荻尾彰一</u>,<u>佐川宏行</u>ほか15名, "Trigger electronics of the new Fluorescence Detectors of the Telescope Array Experiment", Nucl. Instr. and Methods A 609 (2009) 227-234,査読あり, DOI:10.1016/j.nima.2009.07.093.
- ④ 河合秀幸,福島正己,垣本史雄,荻尾 彰一,佐川宏行 ほか 104 名
 『Measurement of Ultra-High Energy Cosmic Rays by Telescope Array (TA)", J. Phys. Soc. Jpn. 78 (2009) pp. 108-113,査読あり, DOI:10.1143/JPSJS.78SA.108.
- 〔学会発表〕(計171件)

国際シンポジウム等での報告:	82 件
(うち招待講演)	(39) 件
物理学会等での報告:	89 件
(うち物理学会招待講演)	(3) 件

国際シンポジウムなどでの発表

① <u>福島正己</u>, "Observation of UHECRs -status and prospects", CosPA 2013, 2013/11/12-15, Honolulu, 米国

- ② 奥田剛, "Recent results from Telescope Array", CosPA 2013, 2013/11/12-15, Honolulu, 米国
- ③ <u>佐川宏行</u>, "Highlights from the Telescope Array Experiments (a highlight talk)", ICRC2013, 2013/7/2-9, Rio de Janeiro, ブラジル.
- ④ 常定芳基, "High-Energy Cosmic Rays (a rapporteur talk)", ICRC2013, 2013/7/2-9, Rio de Janeiro, ブラジル.
- ⑤ 木戸英治, "Constraining UHECR source models by the TA SD energy spectrum", ICRC2013, 2013/7/2-9, Rio de Janeiro, ブラジル, arXiv1310.6093.
- ⑥ 藤井俊博, "Energy spectrum of UHECRs measured by newly constructed fluorescence detectors in telescope Array experiment", ISVHECRI 2012, 2012/08/10-15, Berlin, ドイツ.
- ⑦ <u>福島正己</u>, "Experimental summary and future prospects", UHECR2012, 2012/2-13-16, CERN, スイス.
- ⑧ 池田大輔, "Recent results from Telescope Array", TAUP 2011, 2011/9/5-9, Munich, ドイツ.
- ⑨ <u>佐川宏行</u>, "Results from Telescope Array Experiment", TeVPA 2011, 2011/8/1-5, Stockholm, スウェーデン.
- 野中敏幸, "Observation of UHECRs at Telescope Array Experiment", Rencontre de Moriond, 2011/3-13-20, LaThuile, フランス.
 芝田達伸, "Absolute energy
- 芝田達伸, "Absolute energy calibration of FD by an electron linear accelerator for Telescope Array", UHECR 2010, 2010/12/10-12, Nagoya, 日本.
- 12 <u>福島正己</u>, "Measurements of High Energy Cosmic Rays above 10¹⁶ eV (rapporteur talk)", ICRC 2009, 2009/7/7-15, Lodz, ポーランド.
- (3) <u>佐川宏行</u>, "Measurement of Ultra-high Energy Cosmic Rays by Telescope Array (TA) (a highlight talk)", ICRC2009, 2009/7/7-15, Lodz, ポーランド.

日本物理学会での発表

- 佐川宏行「TA 実験 235: TA 全体報告」日本物理学会第 69 回年次大会 2014/3/27-30,東海大学湘南キャンパス
- ② 野中敏幸「TA 実験 230: TA 地表粒子検出 器による 10¹9eV 以上の宇宙線異方性の 探索」日本物理学会 2013 年秋季大会、 2013/9/20-23,高知大学朝倉キャンパス
- ③ 米田泰久「TA 実験 220: Middle Drum 大

気蛍光望遠鏡ステーションによる観測デ ータの解析」日本物理学会第68回年次大 会2013/3/26-29広島大学東広島キャン パス

- ④ 芝田達伸「TA 実験 210: ELS を用いた FD の絶対エネルギー較正」日本物理学会
 2012 年秋季大会 2012/9/11-14 京都産業 大学
- ⑤ 佐川宏行「(招待講演) TAの現状と将来」 日本物理学会第67回年次大会 2012/3/24-27 関西学院大学西宮上ヶ原 キャンパス
- ⑥ 多米田裕一郎「TA 実験 200: FD ステレ オ観測による超高エネルギー宇宙線の質 量組成測定」日本物理学会第 67 回年次大 会 2012/3/24-27 関西学院大学西宮上ヶ 原キャンパス
- ⑦ 得能久生「TA 実験 196:ハイブリッドトリガーの導入」日本物理学会 2011 年秋季大会 2011/9/16-19 弘前大学文京町キャンパス
- ⑧ <u>佐川宏行</u>「(招待講演) Telescope Array 実験の最新成果」日本物理学会 2010 年秋
 季大会 2010/9/11-14 九州工業大学戸畑 キャンパス
- ⑨ 山崎勝也「TA 実験 180:可搬型 UV レーザーによる大気蛍光望遠鏡の較正」日本物理学会 2010 年秋季大会 2010/9/11-14 九州工業大学戸畑キャンパス
- ① 有働滋治「TA 実験 170: 大気モニター」
 日本物理学会第 65 回年次大会
 2010/3/20-23 岡山大学津島キャンパス
- ① 藤井俊博「TA 実験 161: FD イベント再構成とエネルギー決定」日本物理学会 2009
 年秋季大会 2009/9/10-13 甲南大学岡本キャンパス
- ① <u>荻尾彰一</u>「(招待講演) テレスコープアレ イ実験による北天極高エネルギー宇宙線 観測の現状と最新結果」日本物理学会 2009年秋季大会 2009/9/10-13 甲南大学 岡本キャンパス
- 〔図書〕 該当なし

〔産業財産権〕 該当なし

[その他]

ホームページ等 http://taws100.icrr.u-tokyo.ac.jp/ http://www.telescopearray.org/

6.研究組織
 (1)研究代表者
 福島 正己(FUKUSHIMA, Masaki)
 東京大学・宇宙線研究所・教授
 研究者番号:30241227

(2)研究分担者

佐川 宏行(SAGAWA, Hiroyuki)東京大学・宇宙線研究所・准教授研究者番号: 80178590

垣本 史雄(KAKIMOTO, Fumio)東京工業大学・理工学研究所・教授研究者番号: 00092544

荻尾 彰一(0GI0, Shoichi)大阪市立大学・理学研究科・准教授研究者番号: 20242258

(3)連携研究者

TA は日米が主体となった国際共同実験で、 全体で5か国123名の研究者が参加している。 国別の参加研究者数(2014年6月現在)と、 研究機関のリストを下に示す。

日本	米国	韓国	ロシア	ベルギー
74名	29 名	12 名	5名	3名
【日本】〕	東工大・リ	東京理科	大・近畿	大・東大
宇宙線研	・東大 Ka	vli IPMU	・大阪市	大・神奈
川大・山梨	梨大・埼玉	E大・理	研・東京	都市大・
早稲田大	・千葉大・	・KEK・高	知大・立	命館大・
東大地震	研・広島ī	市大・放	医研・愛	媛大【米
国】Univ.	of Utah	, Rutge	rs Univ.	【韓国】
梨花女子之	大・漢陽ス	大・延世	大・成均	館大・蔚
山科技大	「ロシア」	ロシア	科学院 II	NR【ベル
ギー】 Uni	iv. Libre	e de Bruz	xelles.	

(人数が多いため、とくに科研費の連携研究 者としての登録は行なっていない)