

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25年 5月 17日現在

機関番号:11201 研究種目:基盤研究(B) 研究期間:2009~2012 課題番号:21340042 研究課題名(和文)赤い銀河の星と塵の記憶から探る宇宙の星形成史 研究課題名(英文) Reconstructing cosmic star formation history with memory of stars and dusts in red galaxies 研究代表者 花見 仁史(HANAMI HITOSHI) 岩手大学・人文社会科学部・教授 研究者番号:00212150

研究成果の概要(和文): すばる望遠鏡で検出した約10万個の銀河について、赤方偏移、星質 量、吸収量、星形成率を出し、多波長データベースを作成した。また、この一部の約1000個 の赤外線銀河について、それらの活動起源を星形成、活動的中心核、星形成+活動的中心核に 分類し、星形成よりも巨大ブラックホールが潜む活動的中心核が卓越する後者2つの活動が赤 方偏移1前後で急激に進化していること、また、その質量膠着率と成長率を明らかにした.

研究成果の概要 (英文): We studied the star-formation and AGN activity of massive galaxies in the redshift range z=0.4-2, which were detected in a deep survey field using Subaru telescope. From them, we had selected ~1000 Luminous InfraRed (IR) Galaxies (LIRGs) and classified them into three populations; starbursts, starbursts coexisting with AGNs, and AGN-dominants. Super Massive Black Holes (SMBH) could already have grown in the LIRGs with AGNs at z>1.2.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009 年度	4,900,000	1, 470, 000	6, 370, 000
2010年度	4, 500, 000	1, 350, 000	5, 850, 000
2011 年度	4, 200, 000	1, 260, 000	5, 460, 000
2012 年度	500,000	150,000	650,000
年度			
総計	14, 100, 000	4, 230, 000	18, 330, 000

研究分野:数物系科学

科研費の分科・細目:天文学・天文学

キーワード:銀河形成、銀河進化、星形成、活動的銀河中心核、巨大ブラックホール、ダスト 形成、重元素合成、輻射輸送過程

1. 研究開始当初の背景

SCUBA,ASTE/AzTEC などのサブミリ波望 遠鏡などが、まとまった数のサブミリ波銀河 を検出しはじめ、赤外線観測衛星 Spitzer や 「あかり」も多くの赤外線銀河を検出し、こ れらの深宇宙の「赤い銀河」の可視同定が喫 緊の課題となっていた.また、これらの「赤 い銀河」の可視光から遠赤外線ーサブミリ波 に至るスペクトルエネルギー分布について、 その信頼できるモデルの構築とそのデータ ベース構築が望まれていた.我々は銀河の多 様な星形成史+化学進化モデルと信頼性の ある輻射輸送過程を取り入れた銀河のダス トスペクトルモデルを世界に先駆けて構築 済みであったので、「赤い銀河」の赤方変移 =距離のみならず、それらの星形成史に連動 した星質量、星形成率、ダスト量を再現する ことが可能な段階にあった.

2. 研究の目的

深・広視野・多波長域探査により検出された 深宇宙の塵・ダストに被われた「赤い銀河」 のスペクトルエネルギー分布を調べること により、現在の宇宙で大半の星を抱えている 大質量銀河の形成と進化過程を明らかにし て、宇宙の星形成史を探る.

研究の方法

(1)すばる望遠鏡 Suprim-Cam により得られた 可視多色撮像画像で検出した 10 万個の銀河 の多波長データベースを作成した. これらの データベース銀河について、可視・近赤外測 光スペクトル解析を行い、信頼性の高い赤方 偏移を導出した. さらに、それらの星質量、 星形成率(可視)、ダストによる吸収(可視) を導出した.

図1:スペクトル観測による赤方偏移と星成 分のみの銀河モデルによる測光的赤方偏移. ほとんどの銀河については、両者は一致する. 広がった巾輝線放射を示す活動的銀河核(ダ イヤモンド)でも、半数以上のものは、母銀 河の星成分から放射が卓越するので、赤方偏 移を再現できることが分かる.

図2: すばる望遠鏡で検出された銀河の明る さと色. 左から赤方偏移 z>1.2, 1.2>z>0.8, 0.8>z>0.4. 大きなシンボルは赤外線銀河.

(2)検出された10万個の銀河の一部の、赤外 線観測衛星「あかり」で検出された約1000

個の z=0.4-2 の明るい赤外線銀河について、 ダストスペクトル解析を行った. ①星形成銀河、活動的中心核銀河、星形成+ 活動的中心核銀河の3つの種族に分類した.

図 3a: 星形成赤外線銀河の静止系スペクト ル:8umの多環芳香族炭化水素からの放射と 10umの硅素の吸収、及び5um付近の星からの 放射とダストからの放射との間の谷などの 星形成活動の特色が見える.曲線は星形成銀 河の Siebenmorgen-Krugel によるダストスペ クトルモデル (SK モデル).

図 3b:活動的中心核赤外線銀河の静止系スペ クトル;曲線はトーラス状のダストにより覆 われた銀河中心核のスペクトルモデル(ダス トトーラスモデル). このダストトーラスモ デルは、図 1aの S&K モデルで顕著であった 5.8.10um 構造は見られない.

wavelength (μm)

図 3c: 星形成+活動的中心核銀河の静止系スペクトラム;曲線はS&Kモデルとダストトーラスモデルの合成.

②赤外線光度から、星形成銀河のみならず星 形成+活動的中心核銀河についても、銀河中 心核の寄与を除いて、星形成率(赤外)を導 出し、星質量と星形成との関係を明らかにし た.

図 4a:明るい赤外線星形成銀河の星質量と星 形成率(赤外)との関係

図 4b:赤外線星形成銀河の星質量と星形成率 (赤外)との関係

図 4c:明るい星形成+活動的中心核銀河の星 質量と星形成率(赤外)との関係

③活動的中心核銀河について、中心核ブラックホールへの質量膠着率の連動する5um光度から、ブラックホール成長率を求めた.

図 5a:活動的中心核銀河の星質量と 5um 光度 との関係.光度の急激な進化が見られる.

図 5b: 星形成銀河の星質量と 5um 光度との関係. 活動的中心核銀河のような急激な進化や 星質量との関係は見られない. 実線は図 4 の 実線と同じ星質量と星形成率との関係に対 応する星質量と 5um 光度との関係で、星形成 活動を起源として矛盾しない.

図 5c: 星形成+活動的中心核銀河の星質量と 5um 光度との関係. 活動的中心核銀河と星形 成銀河との中間的な振る舞いを示す.

4. 研究成果

(1)可視光多波長スペクトル解析から再現した星形成史については、先行研究と矛盾しない結果を確認できた。
①星形成率は星質量にほぼ比例する。
②過去に溯るほど、星形成率は大きくなるが

②過去に遡るほど、星形成率は大きくなるが 吸収効果は小さくなる傾向にある. (2)赤外線まで入れた多波長スペクトル解析 から赤外線銀河の星形成史については、図4 にあるように、(1)と同様に、これまでの先 行研究とほぼ矛盾しない結果を確認できた.

(3)活動的中心核銀河、星形成+活動的中心核 銀河の急激な赤外線光度の減光を発見した (図5参照)。この起源は巨大ブラックホー ルが潜むダストに覆われた銀河中心核の活 動と考えることができ、その巨大ブラックホ ールへの質量降着率とその成長率に制限を 与え、進化過程が再現した.このようなダス トに隠された銀河中心核の進化について、観 測からの直接的証拠を提示したのは、本研究 が世界的にも初めての成果と言える.

(4)明るい星形成+活動的中心核銀河の星形 成率(赤外)は、z<0.8では、明るい赤外線、 赤外線星形成銀河いずれのそれとも、抑制さ れていることが明らかとなった(図4参照).

(5) 星形成銀河について、可視・近赤外域と 中間赤外域でのスペクトル解析のそれぞれ から、独立に導出された吸収(可視)と吸収 (赤外)とを比較し、以下が明らかとなった. ①吸収はダスト量~重元素量を反映し、星形 成に伴って星から放出される重元素が蓄積 される銀河の化学進化の描像から、星形成率 などが同じでも時間を遡ると、赤方偏移が大 きくなると吸収が低下するはずである.吸収 (可視)と吸収(赤外)はともにこの化学進化 の描像を再現する(図6参照).

図 6a:明るい星形成銀河の吸収(可視)と星形 成率の関係.実線は、上から赤方偏移 z=2.5,1.0,0.6のときの星質量が1000億太陽 質量の銀河の平均的な吸収(可視)と星形成 率の関係.

図 6b:図 6a と同様だが、吸収(赤外)の場合.

②8um と 10um の光度比は PAH7.7um 放射に対 する硅素ダストの自己吸収による 10um 帯の 減光効果を反映するので、吸収が大きいほど この光度比が低下するはずである.この逆相 関性は先行研究で多用されている従来の手 法による吸収(可視)では確認できなかった が、今回、我々が新たに導入した吸収(赤外) では確認できた.このように、先行研究では 再現が困難であったダストに覆われた星形 成領域の光学的厚さなどの物理状態に我々 の手法で迫ることが可能となった(図7参照).

図 7a:吸収(可視)と8umと10umの光度比. 予測された逆相関は顕著ではない.

図 7b:吸収(赤外)と8umと10umの光度比. 予測された逆相関が見られる.

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計14件) ①Nobuta, K.; <u>Akiyama, M</u>.;...<u>Hanami, H.</u>, 他,Black Hole Mass and Eddington Ratio Distribution Functions of X-Ray-selected Broad-line AGNs at z[~]1.4 in the Subaru XMM-Newton Deep Field, Astrophys. J.,査読 有, 2012,761,143(22pp),

DOI: 10.1088/0004-637X/761/2/143

②Hanami, H.;Ishigaki, T.; Fujishiro, N.; <u>Nakanishi, K.</u>; 他, Star Formation and AGN Activity in Galaxies Classified Using the $1.6\,\mu$ m Bump and PAH at z = 0.4-2, Features 2012. Publ. Astro. Soc. Japan, 査 読 有 , 64. 70(39pp), http://pasj.asj.or.jp/ (3) Takagi, T.; Matsuhara, H.; Goto, T.; Hanami, H.;他, The AKARI NEP-Deep survey: mid-infrared source catalogue, а 2012, Astro. & Astrophys., 查読有, 537, 24,

DOI: <u>10.1051/0004-6361/201117759</u>

④Matsuura, S.;Shirahata, M.; Kawada, M.;Takeuchi, T. T.;Burgarella, D.;Clements, D. L.;Jeong, W.-S.;<u>Hanami,</u> <u>H.;</u>他,Detection of the Cosmic Far-infrared Background in AKARI Deep Field South,Astrophys.J.,査読有,737,2

DOI: <u>10.1088/0004-637X/737/1/2</u>

〔学会発表〕(計3件)

①<u>Hanami,H.</u>, Star formation and AGN in LIRGs at z=0.4-2.0, 国際会議"Swinburne Keck Science Workshop, 2012.3.28,メルボ ルン,オーストラリア

②<u>Hanami,H.</u>, Star Formation and AGN activity in Dusty Galaxies Classified with MIR SED diagnosis at z=0.4-2, 国際会 議"Through the IR-looking glass: Dusty View of Galaxy and AGN Evolution", 2011.10.05, パサディナ、アメリカ

③<u>Hanami,H.</u>, Reconstruction of Star Formation and AGNs Activities in Galaxies Classified with the Balmer Break, 1.6 µm Bump and PAH Features up to z ~=2, 国際会 議" Tracing the Ancestry of Galaxies", Proceedings of the IAU Symposium 277, 2010. 12. 20, ワガドゥグー, ブルキナフ アソ 〔その他〕 ホームページ: Welcome to Red Galaxy Zoo, http://akari.hss.iwate-u.ac.jp/nc2/htdo cs/

6. 研究組織

(1)研究代表者
花見仁史(HANAMI HITOSHI)
岩手大学・人文社会科学部・教授
研究者番号:00212150

(2)研究分担者
秋山正幸(AKIYAMA MASAYUKI)
東北大学・理学(系)研究科(研究院)・准教授
研究者番号: 50425401

中西 康一郎(NAKANISHI KOUICHIRO) 国立天文台・ALMA 推進室・助教 研究者番号:60399277

(3)連携研究者
松浦 周二 (MATSUURA SYUJI)
宇宙航空研究開発機構・助教
研究者番号:10321572