科学研究費補助金研究成果報告書

平成 23年 5月 31日現在

^畿 関番号:32660 冊究種目:研究活動スタート支援 冊究期間:2009 年~2010 年 果題番号:21860071				
开究課題名(和文) 六方晶窒化ホウ素へのリチウムインターカレーションによる 新物性の発現				
开究課題名(英文) Finding of the new properties by Li intercalation into hexagonal boron nitride				
开究代表者				
兵藤 宏 (HYODO HIROSHI)				
東京理科大学・基礎工学部・助教				
研究者番号:30548863				

研究成果の概要(和文): 六方晶窒化ホウ素(h-BN)とLiをモリブデン管に封入し、1000-1500 ℃で熱処理することで、Liをh-BNの層間にインターカレートしたh-BN(Li-h-BNIC) を作製することができた。本研究成果であるh-BNへのLiインターカレーションを他のアルカ リ金属元素やアルカリ土類金属元素のインターカレーションへ発展させることにより、 「h-BNIC」という新しい研究領域が創出できると考えられる。

研究成果の概要(英文): Li-intercalated hexagonal boron nitride (Li-h-BNIC) was successfully synthesized by sealing h-BN and Li in a molybdenum tube and annealing at 1000 to 1500 °C. It is possible that new research field "h-BNIC" will be created by evolving the results of this study to the intercalation of other alkaline metal elements and alkaline earth elements

			(金額単位:円)
	直接経費	間接経費	合 計
2009年度	1, 130, 000	339, 000	1, 469, 000
2010年度	980, 000	294, 000	1, 274, 000
年度			
年度			
年度			
総計	2, 110, 000	633, 000	2, 743, 000

交付決定額

研究分野:工学

科研費の分科・細目:材料工学・金属物性

キーワード:インターカレーション、六方晶窒化ホウ素、層間化合物、X線回折

1. 研究開始当初の背景

六方晶窒化ホウ素(h-BN)は蜂の巣格子 状に配列した原子層が積層したグラファイ トと同様の構造を持つ物質である(図1)。グ ラファイトのような層状構造を持つ物質の 層間には様々な原子や分子を挿入して層間 化合物を作製できる場合がある。特にグラフ ァイト層間化合物(GIC)は非常に多くの物 質が知られており、中でもアルカリ金属、ア ルカリ土類金属の GIC については電気伝導 率の変化や超伝導の発現等の興味深い物性 が報告されている。一方、h-BN はグラファ

図 1.h-BN の結晶構造

イトと同様の構造をとるにもかかわらず、 h-BN層間化合物(h-BNIC)に関する報告例 は数件しかない。成功例はSO₃F-h-BNICがあ りBN層間距離の増大と電気伝導率の温度依 存性が金属的になった事が報告されている。 また、第一原理計算からLi-GICと同様の構造 を持つLi-h-BNICは金属化することが予測さ れている。研究例が少ない原因はBN層間へ のインターカレーションの難しさにある。 BNの結合にはイオン性が存在し、層間の結 合に分子間力に加えてイオン結合が寄与し ているため、グラフェン層が分子間力のみに より積層しているグラファイトよりもh-BN の層間相互作用が強いと考えられている。

GICの主要な作製法にインターカラントの 蒸気にグラファイト母相を曝す蒸気拡散法 がある。過去の蒸気拡散法によるh-BNIC作 製の研究例では、反応容器にGICと同じ石英 管を用いていたが、石英管は高温でアルカリ 金属と反応するため、反応温度を 500℃程度 までしか上げることができず、その条件では h-BNICの作製には成功していなかった。層 間化合物の研究とは異なるが、Li₃BN₂に関す る研究において原料Li₃NとBNをLi₃BN₂の融 点を超える高温域で熱処理した場合の試料 でGIC的なXRDパターンが観測された例が あるが、XRDパターンの類似性を指摘するに 留まっている。この事実は過去の研究例に無 い高温域で熱処理を行うことで、反応性が向 上しh-BNICが作製できる可能性を示唆して いる。

2. 研究の目的

本研究の目的は、過去の研究例よりも高温 で熱処理を行うことで、最もイオン半径が小 さく BN 層間に入り易いアルカリ金属である と考えられる Li をインターカレートした h-BNIC を作製し、その構造と物性について の知見を得ることである。

3. 研究の方法

粉末またはバルク h-BN を Li と共に Ta ま たは h-BN 坩堝に入れ、更に坩堝をステンレ スまたは Mo 管にアーク溶接を用いて封入し た。これを 1100℃から 1500℃の温度範囲で 10 時間熱処理することで、Li-h-BNIC の適 切な作製条件の探索、及び作製を行った。実 験室系の XRD で相同定を行い、構造解析の 為に SPring-8、BL02B2 ビームラインにおい て波長 0.8 Åで 2 θ = 4 ~ 75 °で XRD データ を取得し、Rietveld 解析を行った。また、層 間の Li が規則的に配列した場合に現れる超 格子構造の観測を目的として TEM を用いて

物質	a [Å]	c [Å]
h-BN	2.504	6.663
Li-h-BNIC	2.566	7.520
graphite	2.464	6.711
Li-GIC (LiC ₆)	2.477	7.474

図 2. (a)試料の Rietveld 解析の結果、(b)実 測データ(点)と構造モデル(実線)の相違 電子線回折図形を観察した。物性面では、バ ルク試料について電気伝導率の測定を行っ た。また、SQUID 磁束計を用いて磁化率測 定を行った。

4. 研究成果

図 2 (a)に SPring-8 で測定した Li-h-BNIC の XRD パターンに対して Li-h-BNIC, h-BN, LiOHの 3 相でRietveld解析を行った結果 を示す。ここで、Li-h-BNICの構造として、 Liの占有を考慮せずインターカレーション により h-BN格子が伸びた構造を用いた。 Rwp = 5.5%であり、ほとんどのピークは上 記の 3 相でフィッティングできた。2 θ = 14° (d = 3.33 Å)付近のh-BNの(002)の反射が低 角側にシフトしてLi-hBNICの反射として 2 θ = 12°(d = 3.76 Å)付近に現れており、これ はLiインターカレーションにより BN層間距 離が増大したものだと理解できる。格子定数 はc軸だけで無くa軸も変化していた(表 1)。c 軸の増大率はLi-GICの場合とほぼ等しく、

表 1. Li-hBNIC と Li-GIC の格子定数

Li-h-BNICの作製成功を裏付けている。図 2 (b) に示す様に、構造モデルから予測される Li-h-BNICの(101)と(004)の反射が観測され ておらず、計算との不一致が生じていた。 Li-h-BNICの構造として、代表的なGICの構 造であるKCsやLiC6の構造モデルにLiの占有 を考慮して解析した場合でも、同様の不 一致が生じていた。Li-h-BNIC の(100)や (002)の反射は強く現れている事から、3次元的秩序が弱くなっていると考えられる。

TEM 観察で得られた電子線回折図形(図 3) では、h-BN では BN 格子に由来する 6 回対 称のスポットが明瞭に観測されたが、 Li-h-BNIC では GIC で見られる場合のある インターカラントを含めた周期的構造によ る超格子反射は観察されなかった。BN 層由 来の6回対称性を残しつつもスポットがデバ イ・シェラー環状に広がり、構造のアモルフ ァス化が見られた。XRD と TEM の結果を合 わせると、Li インターカレーションによる層 間距離の増大により BN 層間の相互作用が弱 まり、熱処理時の高温を駆動力として BN 層 の積層が乱層化したと推察される。

電気伝導率の温度依存性を図4に示す。電気伝導率の絶対値は絶縁体であるh-BN ($\sigma \approx 10-15 \left[\Omega^{-1} \text{ cm}^{-1}\right]$)から大幅に向上していた。しかし、温度依存性は可変領域ホッピング伝導を示しており、構造乱層化の影響が強く現れていると考えられる。磁化率測定の結果、Li-h-BNICに由来する超伝導は2 K以上では観測されなかった。

以上、まとめると、過去の研究例よりも高 温で反応性の高い実験条件を実現すること により、Li-hBNICの作製に成功した。放射 光を用いた XRD 測定により、Li インターカ レーションに伴い Li-hBNICの BN 格子が a, c 軸共に増大していることがわかった。試料 にはインターカレーションに伴って BN 層の

積層の乱層化が起きていると考えられ、アル カリ金属 GIC の様なインターカラントを含 めた秩序構造は確認されなかった。電気伝導 率がホッピング伝導に従っていたことも乱 層化を支持している。また、室温で電気伝導 率が8桁上昇した。

本研究成果である h-BN への Li インター カレーションを他のアルカリ金属元素やア ルカリ土類金属元素のインターカレーショ ンへ発展させることにより、「h-BNIC」とい う新しい研究領域が創出できると考えられ る。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

① A. Sumiyoshi, <u>H. Hyodo</u> and K. Kimura, "Li intercalation into hexagonal boron nitride", Journal of Physics and Chemistry of Solids, 71 (2010) 569-571 (査読有).

〔学会発表〕(計4件)

① A. Sumiyoshi, <u>H. Hyodo</u> and K. Kimura, "Li intercalation into hexagonal boron nitride", 2010 MRS Fall Meeting, 2010 年 11月 29日, Hynes convention center (Boston, USA).

② 住吉篤朗,<u>兵藤宏</u>,木村薫, "六方晶窒
化ホウ素へのLiインターカレーションII",
日本物理学会第 65 回年次大会,2010 年 3 月
23 日, 岡山大学(岡山県).

 ③ 住吉篤朗,<u>兵藤宏</u>,木村薫, "六方晶窒 化ホウ素へのLiインターカレーション",配 列ナノ空間を利用した新物質科学 ユビキ タス元素戦略 第2回 若手研究会,2009 年11月2日,アミューズメント佐渡(新潟県).

④ A. Sumiyoshi, <u>H. Hyodo</u> and K. Kimura, "Li intercalation into hexagonal boron nitride", 15th International Symposium on Intercalation Compounds, 2009 年 5 月 13 日, 精華大学(中国、北京).

6.研究組織
(1)研究代表者
兵藤 宏 (HYODO HIROSHI)
東京理科大学・基礎工学部・助教
研究者番号: 30548863

(2)研究分担者 なし (3)連携研究者 なし