科学研究費補助金研究成果報告書

平成 23 年 6月 30 日現在

機関番号:82706

研究種目:研究活動スタート支援

研究期間:2009~2010 課題番号:21860097

研究課題名(和文) 深海酵母による新規界面活性物質の効率生産

研究課題名(英文) _Efficient production of novel biosurfactant by yeast isolated from

deep sea

研究代表者

小西 正朗 (KONISHI MASAAKI)

独立行政法人海洋研究開発機構・海洋・極限環境生物圏領域・研究員

研究者番号:90533860

研究成果の概要 (和文): 相模湾の深度 1,156m の深海底から採取されたシロウリガイから分離された Pseudozyma hubeiensis SY62 株によって生産されたバイオサーファクタントの詳細な分子構造解析を実施した。核磁気共鳴分光法(NMR)によって、主生産物は MEL-C と推定された。脂肪酸組成を分析したところ、主要な脂肪酸は、既存の MEL-C よりも短い脂肪酸を多く含むことがわかった。表面張力を測定した結果、取得した MEL-C は既存の MEL-C よりも低い臨界ミセル濃度を示すことがわかった。培地組成等の培養条件を検討した結果、1 週間で 129 \pm 8.2 g/L の MEL を生産することができた。

研究成果の概要(英文): We describe detailed structure determination of biosurfactant produced by *Pseudozyma hubeiensis* SY62, which was newly isolated from *Calyptogena soyoae* (deep-sea cold-seep clam, "Shirouri-gai") at 1,156 m in Sagami bay. Results of nuclear magnetic resonance spectroscopies indicated the major product, namely MEL-C, as a promising BS. According to surface tension determination, the novel MEL-C showed larger critical micelle concentration $(1.1 \times 10^{-5} \text{ M})$ than conventional MEL-C which bound C₁₀ and C₁₂ acids $(9.1 \times 10^{-6} \text{ M})$. We demonstrated a highly efficient production of MELs in the improved medium by fed-batch cultivation. The final concentration of MELs reached 129 ± 8.2 g/L for one week.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2009年度	1, 080, 000	324, 000	1, 404, 000
2010 年度	980, 000	294, 000	1, 274, 000
年度			
年度			
年度			
総計	2, 060, 000	618, 000	2, 678, 000

研究分野: 工学

科研費の分科・細目:生物機能・バイオプロセス

キーワード:深海・酵母・バイオサーファクタント・マンノシルエリスリトールリピッド・シュードザイマ・シロウリガイ

1. 研究開始当初の背景

バイオサーファクタント(BS)とは微生物が 菌体外に生産する界面活性物質の総称であ り、その親水基の構造から、糖型、アミノ酸 型、有機酸型、高分子型などに大別される。 特に、糖型 BS は量産性が高く、植物油など のバイオマスから培地中に 100 g/L 以上の BS を蓄積することができる。中でもクロボ菌目に属する酵母・カビが生産するマンノシルエリスリトールリピド(MEL)は、界面活性剤として優れているだけでなく、自己組織化特性や種々の生理活性(細胞分化誘導活性、抗体・

植物レクチンとの結合能、遺伝子ベクター機 能を有するため、次世代バイオ素材として注 目を集めている。さらに、BS の高度利用を 進めるためには、合成界面活性剤と同様に、 同族体のラインナップを拡充し、種々の機能 に関する構造機能相関等の学術データを蓄 **積する必要がある。しかしながら、当該生産** 菌の遺伝子工学的な育種技術は未発達であ り、既存の生産菌の代謝工学的改良は困難で ある。そのため、MEL 同族体は数種類しか得 られておらず、それらの構造 - 機能相関に関 するデータは少なかった。近年、生産菌の分 子系統的分類と生産する MEL のアセチル化 度・脂肪酸側鎖の鎖長にバラエティーがある ことがわかっている。すなわち、構造の異な るMELを生産する微生物を利用することで、 MEL 同族体のラインナップを拡充すること ができることがわかってきた。

2. 研究の目的

海洋研究開発機構が保有する深海酵母の中から、新規 BS 生産菌を探索したところ、深海二枚貝シロウリガイから分離されたPseudozyma hubeiensis 近縁の酵母が、効率らく糖脂質を生産することを見出した。薄層シロマトグラフィー(TLC)分析によると、薄層当該糖脂質(主成分)は既存の MEL よりも移動度が若干小さく、新規構造を有していることが推測された。シロウリガイから分離された新規 BS 生産菌の分子系統解析、生産された糖脂質の詳細な分子構造解析ならびに新規 BS の効率生産に必要な培養方法を検討した。

3. 研究の方法

(1)菌株

深海から分離した Pseudozyma hubeiensis SY62 ならびに比較株として Pseudozyma rugulosa NBRC 10877 株を用いた。P. rugulosa NBRC10877 株は独立行政法人製品評価技術 基盤機構バイオテクノロジーセンターより 分譲していただいた。菌株はフリーズストッ クとして保存した。フリーズストックを準備 するために、20ml YM 培地(3 g/L 酵母エキ ス,3 g/L 麦芽エキス,5 g/L ペプトン,10 g/L グルコース)を 200 ml 容量のバッフル付きフ ラスコに用意し、121℃で20分間オートクレ ーブ滅菌したものを用いた。用意した培地に 1 白金耳植菌し、25℃, 200 rpm で 2 日間、回 転振とう培養を行った。培養液を最終濃度 20%(w/v)のグリセロールと混合し、-80℃で 凍結保存した。

(2)培養方法

MEL を生産させるために、上述のグリセロールストック(1 ml)を20 mlの YM 培地を入れた200 ml 容量のバッフル付きフラスコに植菌し、25°C,200 rpm で2日間回転振とう培養をした。培養液(2 ml)を MEL 生産用培地(50

g/l オリーブ油, 50 g/l グルコース, 3.0 g/l NaNO₃, 0.25 g/l MgSO₄, 0.25 g/l KH₂PO₄, and 2.0 g/l 酵母エキス (pH 6.0))に植菌し、培養を実施した。

(3)分子系統解析

分子系統樹を作成するためのポリメラーゼ連鎖反応(PCR)テンプレートは既報の論文を参考に以下の手順で実施した。1 白金耳の酵母培養液を抽出バッファー(200 mM Tris/HCl (pH 8.5), 250 mM NaCl, 25 mM EDTA, and 0.5 % SDS)に溶解し、ペレットミキサーを用いて破砕した。PCR 用の核酸はフェノール/クロロホルム抽出とプロパノール沈殿にて取得した。28S リボゾーマル RNA の増幅とシークエンスは White らの方法を用いた。得られた遺伝子シークエンスは BLAST プログラム(http://blast.ddbj.nig.ac.jp/top-j.html)を用いた。アライメント解析には ClustalW プログラムを用いた。樹形図の作成には

TreeView(http://taxonomy.zoology.gla.ac.uk/rod/treeview.html)を用いた。

(4) 糖脂質の分離精製

培養液からの糖脂質の抽出には培養液と 等量の酢酸エチルを用いて酸性条件下で抽 出した。酢酸エチル相からロータリーエバボ レーターで溶媒を除去し、粗画分を得た。得 られた粗画分はクロロホルムに溶解した後、 シリカゲルカラムクロマトグラフィー法に て、各成分に分画した。クロマトグラフィー 分離にはクロロホルム/アセトン溶媒のアセ トン濃度を段階的に増加させて溶出操作を 行った。

(5) 薄層クロマトグラフィー(TLC)

抽出もしくは精製した糖脂質はシリカゲルプレート(silica gel 60F, Merck)を用いた薄層クロマトグラフィー解析に供した。展開溶媒はクロロホルム/メタノール/7 規定アンモニア水溶液(65:15:2, v/v)もしくはクロロホルム/メタノール/水(65:15:2, v/v)を用いた。糖脂質の解析にはアンスロン硫酸法を用いた。

(6) 構造解析

精製した糖脂質は核磁気共鳴スペクトル法(¹H-もしくは ¹³C-NMR)を用いて解析した。核磁気共鳴スペクトルは Varian INOVA 400 (400MHz)を用いて測定した。分子量の推定にはマトリックス支援レーザーイオン化飛行時間質量分析計(MALDI/TOF-MS)法を用いた。マトリックスはαシアノ4ヒドロキシシナピン酸を用いた。質量分析装置は Voyager DE Pro を用いた。脂肪酸組成は脂肪酸をメチルエステル化した後、GC-MS 分析により決定した。

(7) 高速液体クロマトグラフィー(HPLC) 各糖脂質成分の定量には高速液体クロマトグラフィー法(HPLC)を用いた。HPLCシステムは島津 LC-10システムを用いた。順相 HPLC にはシリカゲルカラム(Inertsil sil 100A, $5\mu m$, 4.6×250 mm, GL サイエンス)を用いて、クロロホルム/メタノールでグラジエント解析を行った。糖脂質の検出には蒸発光散乱ディテクター(Model 200, SofTA Corp., USA)を用いた。

(8) 表面張力測定

表面張力はウィルヘルミー型表面張力計 (CBVP-Z,協和界面科学)を用いて、室温下で 測定した。

(9) 水侵入法による液晶形成

水侵入法による液晶形成能の判定を実施 した。液晶形成の判定には Eclipse E800 光学 顕微鏡を用いた。

4. 研究成果

(1)分子系統解析

SY62 株 は *Pseudozyma hubeiensis* (DQ008953)に対し 99%以上の相同性があることがわかった。SY62 株は *P. hubeiensis* と同定した。

(2) TLC 分析

フラスコ培養にて得られた糖脂質は TLC 分析に供した。Fig.1にTLC分析結果を示す。 アルカリ不添加の展開溶媒(クロロホルム/メ タノール/水(65:15:2, v/v))を用いた解析で SY62 株が生産した糖脂質サンプルから MEL-A,-B,-C に対応する 3 種類のスポット(a, b, c)と移動度の小さい2種類のスポット(d, e) が検出された。移動度が小さい d.e スポット はアルカリ条件下(クロロホルム/メタノール /7 規定アンモニア水溶液(65:15:2, v/v))で移動 度が明らかに減少した。これらの結果より、 SY62 株は少なくとも解離基を持たない 3 種 類の糖脂質成分と解離基を持つ2種類の糖脂 質を生産することがわかった。主生産物であ るスポットcに相当する糖脂質を精製し、分 子構造解析に供した。

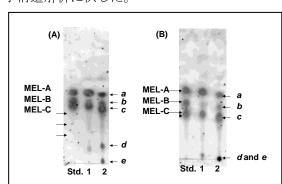


Fig. 1 TLC 分析結果. A, クロロホルム/メタ ノール/水(65:15:2, v/v); B, クロロホルム/ メタノール/7 規定アンモニア水溶液 (65:15:2, v/v) Std: 標準 MEL, 1, *P. rugulosa* NBRC 10877 株由来 MEL, SY62 株由来糖脂 質

(3) 糖脂質の構造解析

主生産物である糖脂質について、 1 H-, 13 C-NMR、脂肪酸分析、MALDI/TOF-MS にて、決定した。主要な糖脂質成分 c は MEL-C (4-O-[4'-O-acetyl-2',3'-di-O-alka(e)noil- $^{\beta}$ D-ma nnopyranosyl]-D-erythritol) と 推 定 さ れ た (Fig.2)。

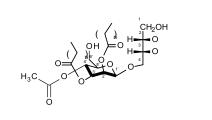


Fig. 2 SY62 株の主生産糖脂質分子構造

しかしながら、深海由来 SY-62 株が生産す る MEL-C の ¹H-NMR のチャート中には. 同 種の既存株 KM-59 株が生産する MEL-C には 見られない特徴的なピークが 2.2 ppm 付近に 検出された。これは、マンノース 2位にアセ チル基が含まれることを示していた。つまり, 長鎖長の脂肪酸鎖の代わりにアセチル基が 導入された誘導体が含まれることを示して いる。そこで、脂肪酸部をメチルエステル化 した後、GC-MSにより組成分析を行ったとこ ろ、 陸生の KM-59 株の MEL-C の主要な脂肪 酸組成が C₆, C₁₂, C₁₆ であったのに対し、深海 由来 SY-62 が生産した MEL-C の場合は C₆, C_{10} , C_{12} であった。すなわち、導入された脂肪 酸成分が、より炭素鎖が短いものとなってい ることがわかった。これらの結果から、陸生 の P. hubeiensis KM-59 や他の MEL 生産酵母 によって生じる MEL よりも, 脂肪酸側鎖が 短いという傾向がみられた(Table. 1)。

	MEL-Cの分子構造		
生産菌	分子量 (メイン)	主要脂肪酸鎖長	脂肪酸鎖長 二本の和
P. hubeiensi \$ Y62	578	C6, C10, C12	C ₁₆
P. rugulosa NBRC10877	634	C8, C10, C12	C ₂₀
P. hubeiensis KM59	662	C6, C12, C16	C22

(4)糖脂質の物性解析

SY62 株から得られた MEL-C と別途用意した NBRC 10877 株が生産した MEL-C の表面 張力値を測定し、臨界ミセル濃度(CMC)を測定した。その結果、SY-62 株が生産した MEL-Cの CMC 値は1.1×10⁻⁵ M と推定された。一方、NBRC 10877 株の CMC 値は9.1×10⁻⁶ M であった。一般的に、非イオン性界面活性剤は親水性が増すほど、CMC 値は高くなる傾向がある。したがって、深海由来酵母より得られた MEL-C は従来の生産株で生産した

MEL-Cよりも親水性が高いと考えられた。

親水的な物性を示したにも関わらず、偏光顕微鏡による簡易測定によれば(Fig. 3)、ラメラ液晶相と考えられるテクスチャ(\mathbf{L}_{α} 相)が認められた。新規 MEL-C は MEL の特徴である高い自己集合能を保持していることがわかった。

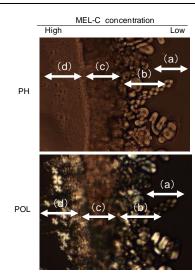


Fig.3 水侵入法による液晶形成能の確認. PH, 位相差像; POL, 偏光観察像; a, 水相; b, ミエリン; c, ラメラ液晶相; d; MEL相

(4)糖脂質生産条件の検討

MELの生産条件を検討した結果、培養温度は25℃,振とう撹拌速度は200rpmが最適であることがわかった。また培地成分の検討をした結果、酵母エキスの添加量を増加させるとMELの生産効率が上がることがわかった。回分培養法で条件検討した結果、MEL生産培地の培地組成をグルコース100g/L、オリーブ油100g/L、酵母エキス10g/Lに変更した場合、4日間の培養で49.2g/LのMELを生産し、炭素源であるグルコースとオリーブ油をほぼ消費していた。そこで、4日目にさらにグルコース100g/Lならびにオリーブ油100g/Lを

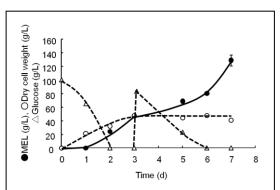


Fig. 4 流加培養結果

添加する流加培養法を適用した結果、7 日間 で 129 g/L の MEL を生産させることに成功した(Fig.4)。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雜誌論文〕(計3件)

- ① <u>Konishi M*</u>, Nagahama T., Fukuoka T., Morita T., Imura T., Kitamoto D., Hatada Y.: Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by *Pseudozyma hubeiensis* SY62, Journal of Bioscience and Bioengineering [in press] 查読有
- ② <u>小西正朗</u>, 深海酵母の利用—バイオサーファクタントの生産—, 高圧力の科学と技術第 10 巻 4 号 347-353(2010) 査読有
- ③ <u>Konishi M.*</u>, Fukuoka T., Nagahama T., Morita T., Imura T., Kitamoto D., and Hatada Y.: Biosurfactant-producing yeast isolated from *Calyptogena soyoae* (Deep-Sea Cold-Seep Clam) in the deep sea, Journal of Bioscience and Bioengineering **110(2)**, 169-175 (2010) 查読有

[学会発表](計3件)

- ① 小西正朗, 福岡徳馬, 長濱統彦, 森田友岳, 井村知弘, 北本大, 秦田勇二 "深海由来酵母 Puseudozyma hubeiensis SY62 株を用いたバイオサーファクタントの生産", 第 10 回極限環境生物学会, 2010 年11 月 15 日, 京都大学宇治キャンパス, 京都
- ② 小西正朗, 福岡徳馬, 長濱統彦, 森田友岳, 井村知弘, 北本大, 秦田勇二 "深海由来酵母 Puseudozyma hubeiensis SY62 株を用いたバイオサーファクタントの効率生産", 第62回日本生物工学会大会, 2010年10月28日フェニックス・シーガイヤ・リゾート, 宮崎
- ③ 小西正朗, 福岡徳馬, 長濱統彦, 森田友岳, 井村知弘, 北本大, 秦田勇二 "深海由来酵母 Pseudozyma hubeiensis SY62 株が生産するバイオサーファクタント", 2009年9月24日, 第61回日本生物工学会大会, 名古屋大学東山キャンパス, 名古屋

6. 研究組織

(1)研究代表者

小西 正朗(KONISHI MASAAKI) 独立行政法人海洋研究開発機構・海洋・極 限環境生物圏領域・研究員 研究者番号:90533860