

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 25 年 5 月 31 日現在

機関番号:14401			
研究種目:基盤研究(B)			
研究期間:2010 年~2012 年			
課題番号: 22360354			
研究課題名(和文) ガストンネル型プラズマ溶射を用いた航空・宇宙用超耐熱材料の開発			
研究課題名(英文) Development of High Heat Resistant Materials for Aero-Space Application			
by Means of Gas Tunnel Type Plasma Spraying			
研究代表者			
小林 明(KOBAYASHI AKIRA)			
大阪大学・接合科学研究所・准教授			
研究者番号:70110773			

研究成果の概要(和文):ガストンネル型プラズマ溶射による複合機能膜の作製プロセスを解明 するとともに、高機能・高密度窒化チタン-セラミックス複合膜の膜特性を評価した。セラミッ クス複合膜では、溶射回数の増加により傾斜機能性などを高めた。また、ガストンネル型プラ ズマ反応溶射により純度95%以上のTiN皮膜が得られ、TiNの結晶粒径がナノサイズ(約 100nm)であることを確認した。さらにTiN膜複合膜の耐食性の向上を果たした。

研究成果の概要 (英文):Gas tunnel type plasma spraying qualifies as one of the prospective methods to produce ceramic composite coatings with high functionality due to its most noteworthy feature of process controllability and operating conditions. Zirconia composite coating with graded functionality of microstructure was formed in a short time. By the plasma reactive spraying TiN coatings with more than 95% purity could be produced simply. The cristal size was 100nm and the corrosion resitance was enhanced.

			(金額単位:円)
	直接経費	間接経費	合 計
2010 年度	6, 300, 000	1, 890, 000	8, 190, 000
2011 年度	4, 700, 000	1, 410, 000	6, 110, 000
2012 年度	3, 000, 000	900, 000	3, 900, 000
年度			
年度			
総計	14, 000, 000	4, 200, 000	18, 200, 000

交付決定額

研究分野:工学

科研費の分科・細目:藤豪工学・航空宇宙工学 キーワード:ガストンネル型プラズマ溶射・ジルコニア複合膜・TiN・超耐熱材料

1. 研究開始当初の背景

原子力、航空宇宙等の先端分野における高 温極限環境に耐えうる素材としてセラミッ クスが注目されてきたが、最近、高強度や高 腐食抵抗などに優れた機能を持つ金属ガラ スなども魅力的な先端材料の1つとして登 場してきた。現在、多くの研究者が耐熱材料 の研究開発を行なっているが、プラズマ溶射 法などによるコーティング、複合化(複合材 料)による応用が簡便な方法として考えられ ている。

プラズマ溶射は広く使用されているが、 セラミックス溶射では、皮膜中の気孔、ク ラック、界面での密着強度など従来技術で は解決できない課題が存在する。プラズマ 溶射法による高品質の金属ガラスの作製は 困難である。そこで国内外で様々な改良研 究が進められているが、解決に至っていな い。これに対して、本研究で使用するガス トンネル型プラズマ溶射は高エネルギー・ 高効率であり、従来のプラズマ溶射装置で は作製されない高品質の非常に緻密で硬度 の高いセラミックスコーティングが得られ る。これは、プラズマ制御、粉末制御を精 密に行うことにより、高品質、高機能膜の 作製を可能とする日本独自の技術である。

研究代表者はこの高エネルギーのガスト ンネル型プラズマを用いた複合機能材料の 創製に関する研究を世界に先駆けて行って きた。これまで独自のガストンネルプラズ マ溶射装置により、傾斜機能ジルコニアコ ーティングなど種々の複合機能材料を作製 してその物理的特性を明らかにしてきた。

- ①.ガストンネル型プラズマ溶射:アルミナ、ジルコニアなど酸化物系セラミックスの 複合機能皮膜の作製と、その高機能化(ビ ッカース硬度、気孔率、耐摩耗性、抵抗 率、反射率など)
- ②. ガストンネル型プラズマによるT i 材 料の表面窒化:表面硬度 Hv=2000 の TiN 膜を約10秒の短時間で作製する方法の確 立

本研究では、こうした一連の研究成果と、 日本独自技術であるガストンネル型プラズ マ溶射を用いたセラミックス系の超耐熱材 料の開発と航空宇宙の先端分野への適用が 検討された。

2. 研究の目的

ガストンネル型プラズマ溶射によるプロ セス特性を解明するとともに、高機能・高密 度窒化チタン-セラミックス複合膜を作製し、 その膜特性を評価する。また、得られた複合 膜の耐環境機能性を高め、宇宙・航空機部品 への実用化を検討する。

- (1) ガストンネル型プラズマ溶射プロセス 特性を実験的・理論的に解明し、厚さ 200 μm以上の高機能ジルコニア複合(TiN-セ ラミックス)熱遮蔽膜の高速作製を目指す。 その構造及び物理学的・化学的機能性を各 種分折装置及び物理学的・化学的試験法を 用いて測定する。
- (2) 耐熱セラミックス膜の課題を解決する ため、また、プラズマプロセスを用いた加 熱処理、複合化処理により TiN-セラミッ クス複合膜の高機能化(傾斜化)、高密度化 を計り、耐熱衝撃性、高温耐食性などを高 め、2000K級の超耐熱材料として開発する。

3. 研究の方法

(1)ガストンネル型プラズマ溶射装置及び実験条件

ガストンネル型プラズマ溶射では、溶射材 料を軸方向からプラズマ中心部に向かって 供給することができる。Fig.1 に、ガストン ネル型プラズマ溶射装置の模式図を示す。溶 射用粉末は、粉末供給器よりAで示したプラ ズマトーチの陰極中心より送給するため、B のガストンネル型プラズマジェットの中心 軸に添って飛行する。そこで、溶射用粉末を 高温のプラズマ中で有効に加熱・溶融させる ことが可能である。

Fig.1 Gas Tunnel Type Plasma Spraying Apparatus. A : Conventional type plasma torch B : Gas Tunnel Type plasma torch (L=spraying distance)

Table 1 Spraying conditions.

Arc current	160, 200, 300, 400 A
Voltage	40-50V
Spraying distance	50 mm
Working gas Ar flow	130 l/min
rate	
Feed gas flow rate	10 l/min
Powder feed rate	12, 32 g/min
Traverse number	4, 16 times
Spraying time	30 s

ガストンネル型プラズマ溶射装置を用い て行った溶射実験条件を Table 1 に示す。表 面にブラスト処理された SUS 304 基材を溶射 距離 *L*= 50mm になるように試料駆動装置に取 り付けた。冷却水と作動ガス(1301/min) を流しながらガストンネル型プラズマジェ ットを発生させる。その後、中空のトーチ中 心電極の穴から溶射粉末(セラミックス)を プラズマ中へ 12g/min、または 32g/min で 供給する。この場合、4 トラバース、または、 16トラバースでそれぞれ30秒間 溶射して金属ガラス膜を作製した。プラズマの電流値は *I*=160,200,300,400 Aと変化させた。

ガストンネル型プラズマ溶射装置により、 ジルコニア、アルミナ混合粉末の粒径、供給 量を調整して、膜組織を制御した耐熱性に優 れたジルコニア-アルミナ複合膜を種々の条 件において形成する。このとき、分光器など を用いてプラズマパラメータを測定し、ガス トンネル型プラズマ溶射によるジルコニア 複合膜の作製プロセスの効率化について検 討する。

(2) ガストンネル型プラズマ反応溶射装置

現有のガストンネル型プラズマ反応溶射 装置(下図)において、窒素ガス(N_2)を用い てプラズマジェットを発生させる。次に自動 微粉末供給装置を用いてチタン(Ti)微粉末 を電極中心孔より N_2 プラズマ中に軸方向に 供給する。 N_2 プラズマ中での窒化反応により、 基板表面に厚さ 200 μ m 以上の高品質窒化 チタン(TiN)厚膜を短時間(10 秒程度)で 作製する。

反応溶射では、溶射粉末のプラズマガスと の反応が、一般的に複雑な溶射プロセスをよ り複雑なプロセスとしている。プラズマ溶射、 反応溶射の各種パラメータを高分解能測定 し、ガストンネル型プラズマ溶射におけるプ ロセス特性を解明する。本ガストンネル型プ ラズマ溶射、反応溶射法による超耐熱・高機 能熱遮蔽 TiN-セラミックス複合膜の高速作 製法を確立する。

(3) 皮膜評価方法

ガストンネル型プラズマ溶射、反応溶射に より得たジルコニア複合膜、TiN-セラミック ス複合膜の断面組織を現有の光学顕微鏡、S EM、画像解析システムなどで観察し、気孔 (欠陥)、結晶粒径分布などを測定する。同 時に、TiN 複合膜の元素分析をEPMAにより行うとともに、その結晶構造をX線回析法により調べて、TiN-セラミックス複合皮膜の構造を明らかにする。

(4) 機械的機能性、耐食性などの解明

作製した TiN-セラミックス複合膜の性質 について、その界面の密着強度を調べるため の引張試験や、ビッカース硬度の測定などを 行なう。

皮膜の硬さ測定には微小ビッカース硬度 計を使用し、試験加重 50 g、保持時間 20 s の条件で表面から厚さ方向に 20 µm ごとに 5 点の測定を行ない、その平均値を求めた。

金属ガラス皮膜のアブレーション摩耗特 性の測定は、ISO 規格のスガ式アブレーショ ン試験により行った。サンプルサイズは 50x50 mm²でSiCエメリー紙を使用したホイー ルの加重は、29.42N である。アブレーション 試験は、加重時間を変えて行った。

セラミックス複合膜の耐食性、高温耐食性 など化学的機能性を測定すると共に、プラズ マ溶射によるセラミックス複合化処理を行 ない、高温耐食性を向上させるための TiN-セラミックス複合膜の高密度化を計る。また、 作製した高密度T i N-セラミックス複合膜 の組織・構造を制御するための新プラズマプ ロセスを検討する。

(5)溶射用粉末

溶射粉末は SEM 写真で観察した。溶射用粉 末として使用した Ti 粉末の外観を Fig. 3 に 示す。粉砕された不定形で Size は 10-40 μm である。

その他、ジルコニア、アルミナ粉末は市販 の標準的なものを用いた。また、Fe 基金属ガ ラス溶射粉末も用いたが、プラズマ溶射にお いて高温、徐冷の条件では、金属ガラスの分 解結晶化が起きることが予想される。

Fig.3 SEM images of feedstock Ti powder. *Size:10-40 μm* Shape : Irregular

(6)まとめ

熱遮蔽性、熱衝撃特性を向上させ、2000K 級超耐熱材料である高機能TiN-セラミッ クス複合膜の作製法としてのガストンネル 型プラズマ溶射、反応溶射の有効性を総合的 に評価する。

また、この超耐熱・熱遮蔽材料の応用については、航空宇宙用の各種耐熱材料(ジェットタービン翼、ロケットエンジン内壁、宇宙 推進機耐熱部品など)としての適用を検討し、 その実用化に向けての可能性を総合的に評 価する。

4. 研究成果

 セラミックス(アルミナ+ジルコニア) 複合膜の高機能化

ガストンネル型プラズマ溶射を用いてセ ラミックス(アルミナ+ジルコニア)複合膜 を作製し、アルミナ混合率の増加により緻密 で硬いTBCが出来ることを確認した。また、 この高エネルギープロセスにより、膜の表面 から基板方向に向かって傾斜機能性を持つ ことが明らかになったが、溶射回数の増加に より、より滑らかな傾斜機能性が実現できた。

熱遮蔽セラミックス複合膜について超耐 熱・高機能の特徴を持つ複合コーティングを 高速作製により得た。具体的にはジルコニア に対してアルミナ以外にLa203、CeO2 を加え て数分レベルの短時間で作製した 200 ミクロ ンの膜に対して耐熱衝撃性、機械的機能性の 向上を果たした。

また、電気炉による複合膜の表面加熱処理 (800 度)を行ない、高温耐食性を向上させ るための検討を行なった。

以上で得られたセラミックス複合膜の耐 熱性、耐熱衝撃性、化学的機能性などの評価 とともに、宇宙・航空機部品、宇宙推進機な どへの適用についての有効性を見いだした。

(2) 窒化チタン (TiN) 膜の作製

ガストンネル型プラズマ溶射を用いた窒 化チタン(TiN)膜の作製については、内部 供給に加えて外部供給方式をも行い、これま でと同様の結果を得た。

 Fig. 4に得られた TiN 膜の表面形状を示す。

 (a) は標準的な皮膜表面で、(b) は完全に溶

 融した TiN 粒子による皮膜表面である。

また、Fig.5は溶射距離が異なるときのTiN 膜の表面からのXRDパターンを示し、、この 場合、溶射距離が長いほどTiN膜の表面のTiN ピークの強度が高くなる。

この場合、作動ガス流量 N2:20 1/min, Ar:1801/min、プラズマ電流400A、L=75 mmにおいて、95%以上の純度のTiN皮膜 が得られた。

(a) Typical surface microstructure of coating

(b) Completely melted splats

Fig. 4 Surface microstructure of coating.

Fig.5 XRD patterns of Plasma reactive sprayed TiN coatings. (Argon+201pm N2 Plasma)

最適条件となるT i N皮膜の作製条件を 以下に示す。

Table 2 Optimized condition for TiN coating.

Plasma current	: 400 A
Argon flow rate	: 180 lpm
N2 Flow rate	: 20 lpm
Spray distance	: 90 mm
Powder feed rate	: 10 gpm
Carrier gas flow	rate : 7 lpm

Fig. 6 SEM micrograph of the cross section of the TiN sprayed at plasma current:400 A, spray distance: 90 mm.

Fig.7 XRD patterns of Plasma reactive sprayed TiN coatings. (Argon+201pm N2Plasma)

XRD 分析の結果では、Fig.7 に示すように TiN 生成効率は 90 %以上であることがわかっ ている。

また、TEM分析の結果、T i Nの結晶粒 径はナノサイズ(約 100nm)であることを確 認した。(Fig. 8 の左下図)

Fig.8 XRD patterns of Plasma reactive sprayed TiN coatings. (Argon+201pm N2 Plasma

Fig. 9は、TiN 膜について断面の硬度分布 を測定した結果である。ビッカース硬さは、 Hv=1000-1300 であり、断面中でほぼ一様な硬 さとなっている。このビッカース硬さは、TiN の硬度 Hv=2000 より低く、溶射膜の気孔の存 在が原因である。また、TiN 膜の厚さによ利 硬度が低下するが、これはTiN 生成効率、膜 の緻密さなどが原因となっている。

Fig.9 Relation of Vickers hardness of the coating and distance from surface of the coating.

Fig. 10 は、TiN 膜のスライディング摩耗 テスト後の表面写真である。この結果は Fig. 10に示したが、10Nのロードのとき70%、 90% TiNのとき良い値を示した。(Fig. 11)

また、TiN 膜の摩耗量を比較すると、SUS304 の5分の1、Ti の半分以下であった。

さらにTiN膜複合膜の耐食性について も測定し、良好な結果を得ている。

Fig. 10 Wear behavior of TiN coating. (TiN70%)

Fig. 11 Sliding Wear rate and TiN percentage.

(3) $T i N + Z r O_2$ 複合膜の作製

ガストンネル型プラズマ溶射装置におい て、内部からZrO₂、外部からTi粒子を 供給し、TiN+ZrO₂複合膜を作製した。 ZrO₂の増加に対して、複合膜の硬度及び 接着結合力が増加した。この多層のTiN+, ZrO₂の膜においては、500 μ mを超える密着 硬度の高い膜が得られた。

(4) その複合膜の耐食性の向上のため、金属 ガラス膜の作製を行い、品質の良い 400μm を 金属ガラス膜が作製でき、複合膜設計の指針 ができた

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

1) Characterization of gas tunnel type plasma sprayed TiN reinforced Fe-based metallic glass coatings,S. Yugeswaran and A. Kobayashi, *Journal of Alloys and Compounds*, 551 pp.168-175 (2013)

2) Effect of over Aluminizing on Hot Corrosion Behavior and Microstructural Changes of CoNiCrAIYSi Coatings, Produced by HVOF and Diffusional Process, Majid MOHAMMADI, Sirus JAVADPOUR, Ahmad Jenabali JAHROMI and Akira KOBAYASHI, *Frontier of Applied Plasma Technology*, 6 pp.25-31 (2013) 3) Sensitivity to experimental errors in evaluating the thermal expansion coefficient of a thermal barrier coating by the coating system specimen <u>,H,Waki</u>, I.Nishikawa, <u>A.Kobayashi</u>, and N.Nishi, *Vacuum*, **88** pp. 93-97. (2012)

〔学会発表〕(計2件)

- 1) Properties of Gas Tunnel Type Plasma Sprayed Nano Structured Metallic Composite Coatings, <u>Akira Kobayashi</u>, APCPST2012, 2012.12.25, (Kyoto)
- 2) Effect of Processing Parameters of TiN Coating by Gas Tunnel Type Plasma Spraying, <u>Akira Kobayashi</u>, ITSC2012,2012.5.22 (Houston, USA)
- 6. 研究組織
- (1)研究代表者
 小林 明 (KOBAYASHI AKIRA)
 大阪大学・接合科学研究所・准教授
 研究者番号: 70110773
- (2)研究分担者

脇 裕之 (WAKI HIROYUKI)岩手大学・工学部・准教授研究者番号: 30324825

安藤 康高 (ANDO YASUTAKA) 足利工業大学・工学部・教授 研究者番号:60306107

小紫 公也 (KOMURAESAKI KIMIYA) 東京大学・新領域創成科学研究科・教授 研究者番号:90242825

(3)連携研究者

宮坂 武志 (MIYASAKA TAKESHI)岐阜大学・工学部・准教授研究者番号:60303666