科学研究費助成事業(科学研究費補助金)研究成果報告書

平成 24 年 6 月 6 日現在

機関番号:14401 研究種目:若手研究 研究期間: 2010 ~ 課題番号:22760558 研究課題名(和文)	(B) ~ 2011 ナノ組織構造化による銅合金の熱・電気物性の飛躍的向上		
研究課題名(英文)	Dramatic improvement in thermal and electrical properties of copper alloy with nano-structure control		
研究代表者			
今井 久志(IMAI HISASHI) 大阪大学・接合科学研究所・特任講師			
研究者番号: 30452379			

研究成果の概要(和文):

銅合金の熱・電気伝導率の向上を目的として,粉末冶金法によるカーボンナノチューブ (CNT)分散銅合金基複合材料の作製を試みた.CNT 単分散溶液を利用することで,銅合金 粉末にCNT を単分散付着させることが可能となった.また,銅に微量なTiを添加した急冷凝 固粉末を利用することで,粉末押出材はTiの反応による母相とCNT の強固な結合で純銅の2 倍の耐力を保持し,母相中のTi固溶量の減少によって83.5IACS%を保持する材料となった.

研究成果の概要(英文):

Characteristics of copper and copper alloy matrix composites reinforced with carbon nanotubes (CNTs) have been investigated. Copper and copper alloy powders coated with un-bundled CNTs were prepared by using the surfactant solution containing CNTs. The extruded Cu-Ti composite alloy containing CNTs revealed small decreased of YS compared to the monolithic Cu-Ti alloy. On the other hand, the composites revealed a higher electrical conductivity than that of the monolithic alloy. For example, Cu-Ti with 0.19 mass% CNTs showed 175.8 MPa YS (Pure Cu : 83.6 MPa) and 83.5 IACS% conductivity.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2010 年度	2, 300, 000	690,000	2, 990, 000
2011 年度	800,000	240,000	1,040,000
総計	3, 100, 000	930, 000	4,030,000

研究分野:工学 科研費の分科・細目:材料工学・材料加工・処理 キーワード:粉末冶金,複合材料

1. 研究開始当初の背景

地球温暖化防止と省エネルギーの双方の推 進において,熱・電気エネルギーの変換効率 の向上(エネルギー損失の抑制)は重要課題 である.例えば,熱交換によるエネルギー損 失が大きい電力事業の火力発電所では,銅素 材パイプの熱伝導率が 30%向上した場合, その他条件が一定とすれば,熱消費率が相対 値で現状より約 0.25%向上し,その分が省 エネルギー効果となる.

これまで国内外での研究において、カーボ

ンナノチューブ (CNT) を用いた熱・電気伝 導率の向上に関する研究が進められている が,上述のような理論物性値が実際の材料に 反映できているのは A1 合金の一部などごく わずかで,銅合金に関しては向上例が無い. その主要因として,①CNT の容易な凝集体形 成,②銅と CNT 間の濡れ性が乏しいことが考 えられ,CNT の均一分散化方法の確立ならび に CNT と銅マトリックスの接触量の向上を 講じる必要がある.一般に,溶解法による CNT 分散では比重差による CNT の浮遊現象で 均一分散が困難であるため,種々の粉末冶金 的手法が用いられる.しかし,CNTの最表面 における炭素間でのファンデルワールス引 力により複合材料中に数十〜数百ミクロン のバンドル状の CNT 凝集体が容易に形成さ れる.この凝集体はマトリックスとなる銅合 金の結合を阻害し,CNTが有する高い熱・電 気伝導率をマトリックスの銅合金に付与で きないだけでなく,複合材料の機械的性質の 悪化要因となる.また,半溶融加工法を用い ても銅とCNTの濡れが乏しいため,両者の接 触は不十分で伝導特性は極端に低下する.

2. 研究の目的

本研究では素材による高効率熱・電気エネ ルギー交換という新たな材料設計に基づき, ナノ組織構造化により銅および銅合金素形 材の熱・電気伝導率の飛躍的向上によるエネ ルギー変換効率の向上を目指した.具体的に は、高熱伝導率、高電気伝導度を有する CNT の孤立単分散化プロセスを利用した CNT 単分 散型銅合金複合化技術を確立した. 高熱・電 気伝導性を特徴とする銅および銅合金の 熱・電気特性を更に向上させることで、上述 した変換効率を飛躍的に向上する複合材料 の創製を試みた.両性イオン界面活性剤によ る+/-電荷の静電引力を使用した水分散プ ロセスでの CNT の完全単分散化方法を確立し, 上述した CNT の凝集体を解消する.併せて銅 に他元素を微量添加し, CNT とマトリックス との間に結合を促すことで,材料欠陥の無い 高強度・高熱,電気伝導特性を有する CNT 単 分散銅合金基複合材料作製プロセスの構築 について検討した.

3. 研究の方法

CNT 分散水溶液に関しては、北海道大学 古月文志教授に依頼し分散液成分を選定,本 学にて分散液を調合した. 銅表面に CNT のみ を残存させるための熱分解挙動解析として, 示差熱重量分析および熱分解 GC-MS 分析を 用いて上記皮膜の熱分解に必要な温度・雰囲 気(還元性,不活性ガス)の適正化を行なった. その際, CNT 添加量-分散性-水溶液濃度の 相関について, SEM による銅粉末表面への CNT 被覆状態の観察とトータルカーボン量 の測定から、CNT 均一被覆に必要な水溶液成 分の適正化を行なった.上述の被覆条件によ り、純銅および銅合金粉末(Cu-Ti)に CNT を単分散付着させて, 複合粉末を作製した. 複合粉末を焼結・押出加工することにより, 押出棒材を得た.得られた押出材の力学特性 および組織構造解析を行なった.力学特性と しては静的引張試験により評価した.熱的特 性に関してはレーザーフラッシュ法による

熱伝導率測定,電気特性に関しては,渦電流 を利用した電気伝導度測定を行なった.組織 構造解析としては,SEM および TEM による組 織観察の他,ラマン分光分析による CNT の構 造解析,EDS 分析による組成分析により,そ れぞれの特性に及ぼすマクロな CNT 添加量 と銅および銅合金母相と CNT との界面構造 変化が,強度と伝導率に及ぼす影響について 検討した.

4. 研究成果

図1にCNT 被覆純銅粉末のSEM 観察結果を 示す. 乾燥工程の終了の段階で, CNT は銅粉 末上に分散付着することが確認された. 乾燥 工程のみを施した粉末表面(a)には CNT の 単分散が確認されるのと同時に、分散液の固 形成分も残存していることがわかる.一方, 水素熱処理を施した粉末(b)においては、分 散液の固形成分は確認されず, CNT のみが分 散付着した.既往研究において、CNT の水素 熱処理前後の TEM 観察を行なった結果,熱処 理前後で MWCNT 特有の多層壁を確認しており, ラマン分光分析結果からも CNT の構造に変化 がないことを示した.よって, Cu/CNT 複合材 料を創製するにあたり,機械的性質ならびに 熱・電気伝導性の低下要因となる固形成分は, CNT 付着粉末の水素熱処理の工程で除去でき るものと考えられる.

Fig.1 SEM observation of dry powder of Cu/CNT composite (a) and Annealed at 873K in H_2 -Ar (b).

図 2 に純銅押出材の引張試験結果を示す. CNT 単純混合押出材については,引張強度・ 伸びともに純銅粉末押出材に比べて同等あ るいは低下する傾向にある.他方,本研究に て得られた CNT 分散付着銅粉末を用いた押出 材においては,耐力値が約 120MPa となり純 銅粉末押出材の 1.3 倍となった.CNT が均一 分散することによる結晶粒微細化効果およ び高強度 CNT の分散強化によって,耐力値が 増加したと考えられる.他方,最大応力に関 しては,低下する傾向にある.炭素と Cu と の濡れ性が悪いことが知られており,本研究 によって得られた材料の塑性変形領域にお いては,結合強度が最も低い Cu-CNT 界面よ り亀裂が進展するものと考えられる.

Fig. 2 Tensile test stress-strain curves of hot extruded Cu/CNT composite with unbundled 1.032 vol% CNTs, raw materials with no CNT, and the materials by conventional mixing process.

図3にCNT分散添加銅基複合粉末押出材の 熱伝導率測定結果を示す.CNTの熱伝導率は 3000~6000W/mKと銅の380~400W/mKに比べ て高い値を示すことから、本研究で得られる CNT単分散付着粉末を用いた材料では伝導率 の向上が期待されたが、実験の結果からは、 添加量の増加とともに低下する傾向となっ た.CNT添加材料の熱伝導性の向上には、界 面における結合が必要であると考えられる.

Fig. 3 Dependence of thermal conductivity of hot extruded Cu/CNTs composite on the amount of carbon.

そこで、本研究においては、上記の CNT の凝 集体を解消した分散添加方法に加えて、母相 と CNT との結合度を向上させるため、微量添 加元素(Ti)の拡散反応による母相と CNT と の結合性の促進を試みた. 図4にCNT被覆Cu-Ti複合粉末(CNT量: 0.19 mass%)のSEM観察結果を示す.本実験 で得られた粉末には,純銅と同様にCNTが粉 末表面に単分散付着することを確認した.分 散液の界面活性剤成分は除去できており,粉 末表面にはCNTのみが残存している.

CNT 添加量と押出材の機械的性質との関係 を図5に示す.同図には、本研究における固 化条件と同様の手順で作製した純銅粉末押 出材の結果を併記した. CNT 無添加 Cu-0.5Ti 粉末押出材は, UTS: 307.8 MPa, YS: 202.3 MPa, 破断伸び 38.9%を示した. CNT 添加量の増加 とともに、Cu-Ti 合金粉末押出材の強度は若 干低下の傾向を示すが、純銅粉末押出材に比 べて高い値を保持しており,破断伸びに関し ても, 本実験の範囲内では 30%以上の高延性 を示した.一般的な高力銅合金の場合,添加 元素による時効析出挙動により, 高強度化と ともに伸びは 20%以下と著しく減少するが, 本実験材料においては、Ti 添加量が 0.54 mass%と微量であることからも、延性に優れ る結果となった. 0.19 mass% CNT 添加押出材 においては、UTS:280.5 MPa, YS: 175.9 MPa となり,特に耐力値は,純銅粉末押出材の約 2倍の値となった.次に,押出材における CNT 添加量と電気伝導率の関係を図6に示す.CNT 無添加 Cu-0.5Ti 粉末押出材の電気伝導率は、 42.5 IACS%となり、比較材として作製した Cu-0.5Ti 鋳造材の電気伝導率 39.8 IACS%と 同程度の電気伝導特性を示した.また,純銅 粉末を用いた焼結押出材の電気伝導率は 99.8 IACS%を示した. これらの結果より、本 実験手法による成形固化法においては, Cu-Ti 粉末の焼結性が良好であると同時に、 旧粉末粒界に存在した酸化皮膜が固化成形 体の伝導率に与える影響は極めて小さいと いえる.本実験条件では、CNT 添加量の増加 とともに,熱伝導率および電気伝導率は向上 する傾向にあり、0.19 mass% CNT 添加材でそ

れぞれ最高値 357 W/mK, 83.5 IACS%となった. 一般に,純銅および銅合金に CNT を添加した 材料においては,前述の通り CNT と母相界面 における整合性の低さや酸化物の存在等に より,母材となる銅および銅合金よりも電 気・熱伝導特性が低下する.しかしながら, 本研究において,0.19 mass% CNT 添加材は母 材 Cu-0.5Ti 合金の伝導率に対して約2倍の 特性を保持した.上述の引張試験結果を加味 すると,高強度と高電気伝導特性を有する材 料であるといえる.一方,0.34 mass% CNT 添 加材においては,電気伝導率は0.19 mass% CNT 添加材料に比べて低下した.

Fig. 5 Dependence of characteristics of hot extruded Cu-0. 5Ti/CNT composites on CNTs contents.

Fig. 6 Dependence of electrical conductivities on CNT contents of extruded Cu-0.5Ti/CNTs composites.

高強度特性と高伝導性の両立を可能とした 材料学的要因を解明するため,各試料の組織 観察および組成分析を行なった.引張試験片 破断面の SEM 観察結果を図 7 に示す.0.19 mass% CNT 添加材においては,破断面に単分 散した CNT が残存し,母相との間に良好な密 着性が確保できていることを確認した.つま り,CNT の単分散および CNT と母相との結合 性が向上したことで,添加した CNT が分散強 化として寄与し、高い引張耐力を保持したと 考えられる.一方、同図(b)の0.34 mass% CNT 添加材においては、数十 μ m程度のCNTの凝 集体が存在した.これは、粉末表面に分散付 着したCNTのうち、焼結の際に旧粉末粒界の 三重点に存在したCNTが残存したものであり、 電気伝導率および耐力値を低下させた原因 であると考えられる.

(a) Cu-0.5Ti with 0.19 mass% CNTs

(b) Cu-0.5Ti with 0.34 mass% CNTs

Fig. 7 Fractured surface of tensile test specimens Cu-0.5Ti/CNTs composites with (a) 0.19 mass% CNTs and (b) 0.34 mass% CNTs

図8に押出材断面における SEM-EDS 分析結 果を示す. (a)の CNT 無添加 Cu-0.5Ti 合金 においては、旧粉末粒界付近ならびに結晶粒 界には Ti の濃化は確認されない. 急冷凝固 法によって作製した Cu-0.5Ti 合金粉末中の 固溶 Ti は、焼結時に析出し、旧粉末粒界に 拡散することが示唆されるが、常温における 銅への Ti 固溶限は 0.5 mass%よりも大きいた め、 冷却過程において母相中に再固溶したと 考える.一方,同図(b)に示す CNT 添加材料 においては、CNT(炭素)と母材との界面に おいて, 顕著な Ti の濃化層が確認できる. 母相中の Ti 量も無添加材に比べて,約 1/10 に減少していることが WDS の分析結果より明 らかとなった. すなわち, 母相に固溶してい た Ti が焼結押出過程で析出後, 拡散した際 に CNT が存在する旧粉末粒界近傍に濃化し, 冷却過程でも再固溶することがなかったと 考えられる.このことより図7の引張試験破 断面に確認された CNT の密着には、この濃化 した Ti が影響していると考える.

0.19 mass% CNT 添加材料における TEM 観察 結果ならびに TEM-EDS による点分析を行なっ た.図9に示すように CNT が存在する旧粉末 粒界付近では、CNT の残存のほか、TiC なら びに Cu₄Ti の形成を確認した.ラマン分光分 析結果からも、焼結体内部の CNT は、原料 CNT に比べて、結晶化度が減少していることを確 認した.急冷凝固 Cu-0.5Ti 粉末中の固溶 Ti は、SPS 焼結段階で析出するが、1223 K の段 階では Cu-Ti 系化合物は分解し、母相中を拡 散する.旧粉末粒界へ拡散した Ti は CNT と 反応し、Cu-Ti 系金属間化合物 Cu₄Ti ($\angle G_{Cu4Ti}$: -1.13 kJ/mol at 1173 K)よりも安定な TiC ($\angle G_{Tic}$: -1.71 kJ/mol at 1223 K)を形成 したと考えられる.

Fig. 9 TEM-EDS observation and point analysis results of extruded Cu-0.5Ti alloy with 0.19 mass% CNTs.

なお、旧粉末粒界まで拡散したものの、CNT と反応しなかった余剰 Ti は冷却過程で Cu₄Ti として CNT 周辺で析出したものと考えられる. 上記の結果より、焼結過程における CNT と析 出 Ti との反応によって生成した TiC/Cu₄Ti 生 成相を経由し、Cu-0.5Ti 合金母相とCNT の界 面結合性が向上したことに加え、CNT および これらの反応生成相が分散強化として寄与 したことで高い耐力値を発現したと考える. 一方、Cu-0.5Ti 合金母相中の固溶 Ti 量が減 少することで、Cu 原子間の格子ひずみ量が減 少し、母相中における電子の移動が容易とな り、電気伝導率が向上したと考えられる.

Ti 添加量を 0.1, 0.5, 0.3, 0.03 mass%と した Cu-Ti 合金急冷凝固粉末および純銅粉末 に対して,本実験と同条件での焼結・押出加 工を施して得られた材料に対して、引張試験 と電気伝導率測定を行なった.引張耐力と電 気伝導率の関係を図 10 に示す. 同図には, Cu-0.5Ti に 0.19 mass%の CNT を添加した押 出材の結果を併記する. CNT 無添加 Cu-Ti 押 出材に関しては,耐力値と電気伝導率との間 にはトレードオフの関係が成立し、電気伝導 率の上昇とともに、耐力値は線形に低下する. 一方,本研究で得られた CNT 添加材において は、CNT と母相の良好な結合性による分散強 化と、母相中の Ti 固溶量減少による電気伝 導率の増加により、

上記のトレードオフ関係 を逸脱し、高強度と高電気伝導性を保持して いるといえる.

Fig. 10 Dependence of yield stress of hot extruded pure Cu and Cu-Ti alloys on electrical conductivities.

5. 主な発表論文等

〔学会発表〕(計1件)

<u>今井久志</u>,近藤勝義,Ti 微量添加銅合金粉 末を用いた炭素系ナノ粒子分散複合材料の 組織と諸特性,粉体粉末冶金協会平成23年 度秋季大会,2011.10.27,大阪大学

6. 研究組織

(1)研究代表者今井 久志(IMAI HISASHI)

大阪大学・接合科学研究所・特任講師研究者番号:30452379