交付決定額(研究期間全体):(直接経費)

科学研究費助成事業 研究成果報告書

今和 6 年 6 月 1 3 日現在

マ和 6 年 6 月 1 3 日現住			
機関番号: 13101			
研究種目: 研究活動スタート支援			
研究期間: 2022 ~ 2023			
課題番号: 2 2 K 2 0 8 8 2			
研究課題名(和文)白質脳症をきたす変異型TREX1によるDNA損傷毒性誘導機序とその抑制分子の解明			
研究課題名(英文)Elucidation of the Mechanism of DNA Damage Toxicity Induction by Mutant TREX1			
研究課題名(英文)Elucidation of the Mechanism of DNA Damage Toxicity Induction by Mutant TREX1 Causing Leukoencephalopathy and Its Inhibitory Molecules			
研究代表者			
安藤 昭一朗(Shoichiro, Ando)			
新潟大学・医歯学総合病院・助教			
研究者番号:10918428			

研究成果の概要(和文):我々は、RVCL-Sの病態機序が、DNA損傷またはその修復経路の異常であると仮説を立て、検証を行った。その結果、RVCL-S型変異TREX1が、酵素活性と核内局在性依存的にDNA二本鎖切断損傷(DSB)を引き起こし、細胞老化をきたすことを見出した。 また、RVCL-S型変異TREX1が、DSBの修復に寄与する、相同組換え修復(HDR)を障害することを発見した。重要な点は、通常TREX1の発現は極めて低く制御されているが、患者組織では高発現しており、TREX1の発現は、細胞 老化関連分泌形質(SASP)により誘導されることである。

2,200,000円

研究成果の学術的意義や社会的意義 RVCL-S型変異TREX1がHDR抑制による二本鎖DNA切断修復異常によるDNA損傷毒性をきたすという病態機序仮説は、 現在我々のみが保有する新規のものであり、学術的意義が高い。この病態機序仮説をもとに、これまで疾患修飾 療法が全く存在しなかったRVCL-Sに対して、新規の治療戦略を提案することが可能である。RVCL-Sは希少疾患で はあるが、常染色体顕性遺伝性疾患であり、本疾患の治療可能性を見出すことは、社会的意義が大きい。

研究成果の概要(英文):We hypothesized that the pathogenesis of RVCL-S is due to abnormalities in DNA damage or its repair pathways and conducted a validation study. As a result, we found that the RVCL-S type mutant TREX1 induced DNA double-strand break (DSB) damage and caused cellular senescence in a manner dependent on its enzymatic activity and nuclear localization. Additionally, we discovered that the RVCL-S type mutant TREX1 importantly, although the expression of normal TREX1 is highly expressed in patient tissues, and this expression of TREX1 is induced by the senescence-associated secretory phenotype (SASP).

研究分野: 脳神経内科学

キーワード: RVCL-S TREX1 DNA二本鎖切断損傷 相同組換え修復 細胞老化

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。 様 式 C-19、F-19-1、Z-19(共通)

1.研究開始当初の背景

Retinal vasculopathy with cerebral leukoencephalopathy with systemic manifestations (RVCL-S) は、30-50代で発症し、約10年の経過で死亡する常染色体顕性遺伝性脳小血管病である。原因遺伝子は、DNA 特異的 3'-5'エキソヌクレアーゼ活性を持つ three-prime repair exonuclease 1 (TREX1) を産生する TREX1 遺伝子である。TREX1 遺伝子は、3つのエキソヌクレアーゼドメインとC 末端側の膜貫通ドメイン (TMD)で構成される。

通常、TREX1 は、核周囲小胞体に局在し、細胞質の DNA を分解し、DNA 由来の自然免疫応答を抑 制する。RVCL-S 型変異 TREX1 は全て3'末端フレームシフト変異であり、TMD を喪失する。その 結果、RVCL-S 型変異 TREX1 は、エキソヌクレアーゼ活性を保ったまま、細胞内局在に異常をき たす。しかし、この現象が RVCL-S の分子病態機序にどのようにつながるかは全くの不明であり、 有効な疾患修飾療法は存在していない。

申請者らはこれまでに、ヒト細胞モデルを用いて RVCL-S 変異型 TREX1 が、核内局在とエキソヌ クレアーゼ活性に依存した DNA 切断損傷を誘導し、細胞毒性を引き起こすことを見出した。しか し、RVCL-S 変異型 TREX1 が、DNA 切断損傷を誘導する、その分子機構は明らかとなっていなかっ た。

2.研究の目的

本研究の目的は、RVCL-S 型変異 TREX1 が誘導する DNA 切断損傷の背景となる分子機構を明らかとし、細胞毒性を軽減させる分子標的を特定することである。

3.研究の方法

RVCL-Sショウジョウバエモデルを用いた、RNAiスクリーニングで見出した、表現型抑制遺伝子 4 種のヒトホモログ遺伝子が、RVCL-S ヒト細胞モデルにおいて細胞毒性を抑制し得るかを検討 した。

まず、HEK293 細胞株を対象に、FIp-in system を用いて、RVCL-S 疾患変異である p.Val235GlyfsTer6(V235fs)ヒト TREX1 遺伝子を挿入し、RVCL-S ヒト細胞モデルを作製した。 このモデル細胞はドキシサイクリン誘導性に変異 TREX1を発現する。次に、このモデル細胞に、 表現型抑制候補遺伝子の short hairpin RNA(shRNA)をレンチウイルスベクターを用いて導入 した。shRNAによる遺伝子発現抑制効果は、droplet digital PCR(ddPCR)によって発現量解析 を行った。いずれの遺伝子も発現抑制できていることを確認した。そして、この shRNAを導入し た RVCL-S ヒト細胞モデルを対象に、ToxiLight bioassayを用いて、表現型抑制候補遺伝子の抑 制により、RVCL-S 疾患変異 TREX1による細胞毒性が低減するか検証した。さらに、DNA 修復の阻 害への感受性を評価するために、PARP 阻害薬であるオラパリブを野生型マウスまたは RVCL マウ スモデルへ投与して、マウス胎児由来線維芽細胞(MEFs)の生存性を評価した。

一方、ddPCR により、RVCL-S ヒト細胞モデルにおける相同組換え修復(HDR)効率を測定した。 また、内在性プロモーター下に RVCL-S 型変異 TREX1 を挿入した RVCL-S マウスモデルを作製し た。本マウスより得た骨髄由来マクロファージ(BDMD)における TREX1 の発現量を測定した。さ らに、インターフェロン およびインターフェロン 投与時の、TREX1 発現量の変化を評価した。

4.研究成果

RVCL-S ショウジョウバエモデルのラフアイ表現型を改善させた 24 遺伝子の gene ontology 経路 解析では、DNA 損傷修復経路(DDR)に遺伝子クラスターを認めた。また、表現型抑制候補遺伝子 4 種のうち、2 種の遺伝子において、ネガティブコントロールと比較して、shRNA 導入群での細 胞死率が低下した。これらの遺伝子の中には、DNA 切断損傷修復に関連するものがあった。これ は、RVCL-S 型変異 TREX1 の細胞毒性が、DDR の異常により引き起こされることを示唆した。

DDR 障害がある場合、DNA 修復の阻害への感受性が上昇し得る。そこで、オラパリブ投与により、 RVL-S 細胞モデルの細胞死を惹起するか検討した。その結果、RVCL-S MEFs は 15-20%の細胞死が、 野生型 MEFs では 3-6%の細胞死がもたらされた。すなわち、RVCL-S 型変異 TREX1 が PARP 阻害薬 への感受性を高めることが分かった。また、RVCL-S MEFs では、 H2AX 染色が増加しており、 DNA 損傷が引き起こされていた。

DNA 損傷が惹起される背景として、RVCL-S 型変異 TREX1 が特定の DNA 修復経路を阻害する可能 性を考えた。そこで、HDR と non-homologous end joining (NHEJ) による DNA 修復効率を測定し た。結果、RVCL-S 型変異 TREX1 発現細胞では、single-stranded template repair (SSTR) 効率 が低下しており、HDR の障害が示唆された。一方、NHEJ 効率は上昇しており、これは、HDR 欠損 細胞と類似していた。以上から、RVCL-TREX1 が細胞毒性をもたらす機序として、HDR 効率が低下 することで、DNA 損傷が蓄積する可能性が示された。

RVCL-S 型変異 TREX1 が、酵素活性と核内局在性依存的に DNA 二本鎖切断損傷(DSB)を引き起こ す背景として、RVCL-S 型変異 TREX1 が、DSB の修復に寄与する、HDR を障害することを発見した。 重要な点は、通常 TREX1 の発現は極めて低く制御されているが、患者組織では高発現しており、 TREX1 の発現は、細胞老化関連分泌形質(SASP)により誘導されることである。

本研究成果により、これまで治療法がなかった RVCL-S に対して、新たな治療戦略を提案できる可能性がある。

5.主な発表論文等

〔雑誌論文〕 計2件(うち査読付論文 2件/うち国際共著 1件/うちオープンアクセス 2件)

1.著者名	4.巻
Uemura Masahiro, Hatano Yuya, Nozaki Hiroaki, Ando Shoichiro, Onodera Osamu et al.	94
2.論文標題	5.発行年
High frequency of <i>HTRA1</i> AND <i>ABCC6</i> mutations in Japanese patients with adult-onset	2022年
cerebral small vessel disease	
3.雑誌名	6.最初と最後の頁
Journal of Neurology, Neurosurgery & Psychiatry	74 ~ 81
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.1136/jnnp-2022-329917	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1. 著者名

1.著者名 Chauvin SD, Ando S, Holley JA, Sugie A,, Onodera O, Kato T, Miner JJ. et al.	4.巻 15
2.論文標題 Inherited C-terminal TREX1 variants disrupt homology-directed repair to cause senescence and	5 . 発行年 2024年
DNA damage phenotypes in Drosophila, mice, and humans 3. 雑誌名	6.最初と最後の頁
Nature Communications	4696
掲載論文のDOI(デジタルオブジェクト識別子)	 査読の有無
10.1038/s41467-024-49066-7	有
オープンアクセス オープンアクセスとしている(また、その予定である)	国際共著 該当する

〔学会発表〕 計3件(うち招待講演 0件/うち国際学会 0件)

1.発表者名

Ando Shoichiro, Kato Taisuke, Nozaki Hiroaki, Kasahara Kyoko, Onodera Osamu

2.発表標題

The longitudinal evaluation of inflammatory cytokines expression in RVCL in vitro model.

3 . 学会等名

第41回日本認知症学会学術集会

4.発表年 2022年

1.発表者名

Kitahara Sho, Ando Shoichiro, Kato Taisuke, Nozaki Hiroaki, Kasahara Kyoko, Onodera Osamu

2.発表標題

Aberrant immunity caused by RVCL-mutant TREX1 depends on nuclear localization and enzyme activity

3 . 学会等名

Society for Neuroscience 2022

4.発表年 2022年

1 . 発表者名

Ando Shoichiro, Uemura Masahiro, Kitahara Sho, Homma Yutaka, Aizawa Hitoshi, Iwanaga Akira, Murota Hiroyuki, Onodera Osamu

2.発表標題

Clinical characteristics of cerebral small vessel disease in pseudoxanthoma elasticum.

3.学会等名

第67回日本人類遺伝学会学術集会

4 . 発表年

2022年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

_

6.研究組織

氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------