科学研究費助成事業

研究成果報告書

平成 26年 6月 10 日現在

機関番号: 2 4 5 0 6
研究種目: 基盤研究(B)
研究期間: 2011 ~ 2013
課題番号: 2 3 3 1 0 0 8 0
研究課題名(和文)メゾスコピッククラスタービームによる有機電子材料のダメージフリー・ナノ加工
研究課題名(英文)Damage-free etching of organic materials with mesoscopic cluster beams
研究代表者
豊田 紀章(Toyoda, Noriaki)
兵庫県立大学・工学(系)研究科(研究院)・准教授
研究者番号:00382276
交付決定類(研究期間全体)・(直接経費) 14 500 000円 (間接経費) 4 350 000円

研究成果の概要(和文):Ar等から形成されたメゾスコピッククラスタービームを用い、ピックアップセルを用いた混 合クラスター形成や、荷電状態、クラスターサイズ、照射中雰囲気ガスなどを変化させて有機材料のダメージフリー・ ナノ加工を行った。損傷評価には主としてGCIBと真空一貫で接続された光電子分光分析装置を用いた。その結果、低イ オン化電子電圧による多価クラスターイオン生成の抑制や、クラスターサイズ制御、水蒸気等の雰囲気ガス制御を行う ことにより、低損傷で有機材料の加工が可能であることを示した。

研究成果の概要(英文): Damage-free processing of organic materials with mesoscopic cluster ion beam was d eveloped using pickup cell and by controlling charge state, cluster-size, and environment gas during irrad iations. An in-situ XPS system connected to cluster ion beam system was used for damage evaluation of orga nic materials. It has been clarified that low-ionization voltage is required to suppress formation of mult iply charged cluster ions. Besides, large cluster ions, and control of environment gas during irradiation is effective for low-damage processing of organic materials.

研究分野: 複合新領域

科研費の分科・細目: ナノ・マイクロ科学

キーワード: クラスター 有機材料 ナノ加工 ダメージフリー

1.研究開始当初の背景

近年、有機 EL などの有機フォトニクス素子、 有機半導体等の有機電子材料の研究開発が急 速に広がっている。さらに、有機電子材料にナノ 構造を形成することにより、有機ナノピラーや無 機・有機融合デバイスを実現し、素子の高機能 化・小型化が検討されている。ナノ構造形成法と して、自己組織化を利用したボトムアップ加工と、 リソグラフィとエッチングを組み合わせたトップダ ウン加工が検討されている。トップダウン加工プ ロセスは、従来の半導体プロセス等で用いられ てきた手法であり、無機材料に対しては成熟し た技術である。しかし、有機電子材料は、エネル ギーを持ったイオン・電子などによって容易に損 傷を受けるため、プラズマやイオンビームなど既 存のトップダウン加工技術を適用することが困難 である。反面、トップダウンによる有機電子材料 のナノ加工を行うためには、指向性や制御性の 良いビームを使うことが必要なため、超低エネル ギービームを実現する技術が求められている。

これまで、中性ビームエッチング等の低損傷 加工技術が開発されているが、プラズマ中の紫 外線による有機材料のダメージが無視できない。 そこで、新しい超低エネルギービームとして、ク ラスタービームが注目されている。例えばフラー レン(C_{en})イオンは、炭素一原子あたりのエネル ギーが小さくなるため、 試料奥深くに 与える損傷 が小さいことが示されており、表面分析用イオン 銃として応用が進んでいる。しかしCmイオンによ るエッチングが進むに従い、Can に含まれるカー ボンの堆積が進み、有機材料の表面分析や組 成分析の阻害要因となっている。また、エレクト ロスプレー法を用いた液滴クラスターイオン源も 開発されており、極めて低損傷でのエッチング 効果が示されている。しかし、照射イオン種を他 の原子に自由に変更することが困難である。

数千個の原子・分子が塊となったガスクラスタ ーイオンは、一原子あたりのエネルギーを容易 に数 eV 以下に低減できるため、照射試料に対 する損傷を低減できる。加えて、表面付近に高 密度のエネルギーが付与されるため、表面原子 が高効率にエッチングされ、単原子イオンに比 ベ加工速度が大きいという特徴を持つ。さらに、 Ar クラスターイオン一個あたりのエッチング量は 単原子 Ar イオンよりも1~2桁ほど大きく、ダメー ジを与えずに高速エッチングが可能である。加 えてクラスターイオンは強力な表面平坦化効果 も有しており、単原子イオン照射で発生する表 面荒れを回避できる。

Si 等の無機材料の加工では、クラスターイオ ンのクラスターサイズが大きいほど一原子あたり のエネルギーが低減されるため、低損傷での加 工が可能であるが、本研究で扱う有機材料は特 に高エネルギー粒子による損傷に敏感なため、 これまで使用してきた平均クラスターサイズ数千 のクラスターよりもさらに大きなクラスター、すな わち数万 ~ 数十万個の原子・分子が集団となっ たメゾスコピックサイズのクラスタービームを用い るとともに、これらの状態を高精度に制御する必 要がある。

研究の目的

本研究では、数万~数十万個の原子·分子 が塊となったメゾスコピッククラスタービームを生 成し、ビームの組成、クラスターサイズ、イオン化 後の荷電状態·エネルギー、照射中の雰囲気ガ ス等の状態を、飛行時間法や独自開発したガス 衝突セルを組み合わせて制御するとともに、電 流密度増大を図る。

Ar等から形成されたメゾスコピッククラスタービ ームを用い、荷電状態、クラスターサイズ、照射 中雰囲気ガスなどを変化させ、有機材料のダメ ージフリー・ナノ加工を行う。損傷評価には主と して GCIB と真空一貫で接続された光電子分光 分析装置を用い、メゾスコピッククラスタービーム の最適照射条件を検討する。

3.研究の方法

[1] 状態制御されたメゾスコピッククラスタービー ムの生成

中性のメゾスコピッククラスタービームは、ノズ ルから高圧ガスを真空中に噴出させることによっ て生成する。ガス原料のみでのダメージフリー加 工が困難な場合、反応性材料を気化し、ピック アップセル内に導入して中性クラスタービームと 衝突させることにより、混合クラスタービームの形 成を行う。これらの結果を元に、有機電子材料 のナノ加工に向け、数万~数十万個の原子・分 子が塊となったメゾスコピッククラスタービームを 生成する。

【2】メゾスコピッククラスタービームによる有機材 料のダメージフリー・ナノ加工

数万個~数十万個の原子・分子が結合したメ ゾスコピッククラスターイオンビームを用い、有機 材料のダメージフリー・ナノ加工を検討する。有 機材料は高エネルギー粒子によって容易に損 傷するため、1eV/atom 以下での照射を行う。メ ゾスコピッククラスターイオン照射後の表面は、 非常に活性になるため、大気中に取り出すこと なく表面状態を評価する必要がある。そこで、本 研究では、クラスターイオン源とX線光電子分光 測定(XPS)が真空一貫で可能な装置を用いる。 さらに、照射中に反応性ガスを導入し、吸着した 反応性分子と有機材料との反応がメゾスコピック クラスターイオンビームによって促進される効果 を用い、エッチング増速を検討する。

4. 研究成果

[1] ピックアップセルによる混合クラスター形成 従来、中性ガスクラスタービームの形成は、ノ ズルから高圧ガスを噴出させることで行ってきた が、各種反応性材料を混合させる場合、液体材 料等を高圧で混合する必要があり、本手法のみ では困難な場合が生じる。そこで、本研究では 中性クラスタービームを所望の反応性ガスを充

図1:メゾスコピッククラスタービーム照射装置の構成

満させたピックアップセル中に通すことにより、反応性ガスと中性クラスターを衝突させ、混合クラスタービームの形成を検討した。図1に装置概要を示す。ノズルからの噴出で形成されたクラスターは、スキマーを通過後、ピックアップセル内で残留ガスと衝突し、混合クラスターを形成する。その後、イオン化部でイオン化された後、最大20kVまで加速され、ターゲットに衝突する。ビーム最下流部には四重極質量分析計が置かれ、クラスタービームの組成評価が可能である。

図2にピックアップセル内に酢酸ガスを導入し て Ar クラスターイオンと衝突させた時の、ガスク

図2:ピックアップセル内に導入した酢酸分圧とクラ スタービーム中の成分強度の関係

ラスタービーム中に含まれる Ar および酢酸起因 成分強度の、ピックアップセル内酢酸分圧依存 性を示す。酢酸をピックアップセル内に導入しな い場合、Ar のみが検出されるが、ピックアップセ ル内の酢酸分圧増大とともに、酢酸に起因する 成分が上昇していく。しかし、ピックアップセル内 の残留ガス分圧の上昇と共に、通過できるクラス ターも減少し、ターゲットで得られるイオン電流も 減少するため、酢酸分圧 2.5×10⁻⁵Torr を最適 値とした。

飛行時間(TOF)質量分析法や磁場偏向質量 分析法によって生成されたクラスタービームの質 量(クラスターサイズ)を測定した結果、クラスタ ーサイズ 15000 程度までのメゾスコピッククラスタ ービームが形成されていることが分かった。

【2】 メゾスコピッククラスタービームによる有機材 料のダメージフリー・ナノ加工

 (a) クラスターイオンビームによる有機材料の 低損傷加工
有機材料にクラスターイオンビームを照射し、

図3: PMMA に Ar モノマーイオンおよび Ar クラスタ ーイオン照射後の XPS C1s スペクトル

同一真空内で X 線光電子分光測定(XPS)を行うことにより、有機材料の損傷について評価を行った。試料には、代表的な有機材料である PMMAを用いた。図3に500eVのArモノマーイ オンおよび15keVのArクラスターイオン照射後 のPMMAに対するXPSのC1sにおけるスペクト ルを示す。Ar モノマーイオンを加速電圧 500V で照射した場合、照射損傷のため、未照射サン プルに存在する289eV付近のN-C=O結合に起因 するピークが減少し、反対にC-Cピークが増加 する。それに対しArクラスターイオンビームを照 射した場合、各ピークの増減は小さく、有機材料 の損傷が小さいことを示している。

(b) イオン化電子電圧依存性

ガスクラスタービームをイオン化する際には、 電子衝撃イオン化法が用いられる。閾値以上の 大きさを持つクラスターは、エネルギーの大きな 電子によって多価にイオン化されてもクーロン力 によって崩壊せず、多価クラスターイオンとして 存在し得る。多価クラスターイオンは、総加速エ ネルギーが加速電圧に価数をかけたものとなる ため、試料に衝突した際に大きな損傷を与える 可能性がある。そこで、イオン化電子電圧を変 化させてポリイミドに照射し、同一真空中で XPS 測定を行うことにより、イオン化電子電圧の損傷 に対する影響を評価した。

図4に、ポリイミドに Ar クラスターイオンビーム を加速電圧 10kV、イオン照射量 1×10¹⁴ ions/cm²で照射し、照射前後における XPS C1s ピーク強度(C-C, C-O, O-C=O)増減率のイオ ン化電子電圧依存性について調べた結果を示 す。各ピーク強度の変化率において、未照射試 料からの変化が少ないほど0に近づき、損傷が 小さいことを示す。図4から、イオン化電子電圧 が 30V の場合に比べ、イオン化電子電圧の上 昇に伴って C-C ピークは増加し、C-O および O-C=O ピークは減少する。すなわち、高いイオ ン化電子電圧でイオン化を行い、多くの多価ク ラスターイオンが形成され、ポリイミドが照射され ることにより、ポリイミド表面がグラファイト化して

図4:ポリイミドに Ar クラスターイオン照射時の XPS 各 ピーク強度変化率のイオン化電子電圧依存性

いることを示す。このように、多価クラスターイオン形成を、低いイオン化電子電圧を用いて抑制することにより、有機材料の低損傷加工が可能であることが分かった。

(c)クラスターサイズ依存性

クラスターサイズ(クラスターに含まれる原子 数)は、一原子あたりのエネルギーを決定するパ ラメータであり、有機材料の損傷形成に大きく影 響する。図5に、ポリイミドにArクラスターイオン ビームを加速電圧15kV、イオン照射量1×10¹⁴ ions/cm²で照射した時の、XPS C1s各ピーク強 度変化率のクラスターサイズ依存性を示す。クラ スターサイズの増加と共に、各結合のピーク強 度変化率が0に近づき、損傷が小さくなっている ことが分かる。今回の最大クラスターサイズは 15000 であり、一原子あたりのエネルギーは 16V/atom である。大きなサイズを有するメゾスコ ピッククラスターを用いることにより、一原子あた りのエネルギーを低減し、有機材料の低損傷加 工が可能なことを示した。

(d)照射中の雰囲気ガス依存性

クラスターイオンは、表面近傍にのみエネルギ ーを付与するため、基板が低温であっても表面 での化学反応が促進される。さらに、試料周囲

図5:ポリイミドにサイズ選別されたArクラスターイオ ン照射時の XPS C1s ピーク強度変化率のクラスタ ーサイズ依存性

に雰囲気ガスを導入すると、試料表面に吸着し たガスと試料との反応がクラスターイオン衝突に より促進されることが Cu などの材料で確認され ている。そこで、本研究では、有機材料にクラス タービームを照射する際に、水蒸気を導入し、 エッチング速度および結合状態変化について 評価を行った。

図6に、水蒸気を 1.0×10⁻⁵Torr 導入して Ar クラスターイオンを照射した時と、導入せずに照 射した場合の、PMMA エッチング深さのArクラス ターイオン加速電圧依存性を示す。水蒸気を導 入した場合、加速電圧 20kV では PMMA のエッ チング深さが Ar クラスターイオンのみの場合と 比べて、ほぼ2倍となっており、化学反応促進効 果が見られる。さらに、照射された表面を XPS で 測定したところ、水蒸気を導入した場合、XPS ス ペクトルの変化が、水蒸気雰囲気が無い場合に 比べて小さく、表面での組成変化が小さいことが 分かった。形成された損傷層が吸着した水分子 との反応によって除去され、組成変化が小さくな ったものと考えられる。

図6:水蒸気導入有無時における PMMA エッチング 深さの Ar クラスターイオン加速電圧依存性

5.主な発表論文等

[雑誌論文](計 9件)

- <u>N. Toyoda</u>, and I. Yamada, Reduction of irradiation damage using size-controlled nitrogen gas cluster ion beams, 査読有, Nuclear Instruments & Methods in Physics Research Section B, **273**, 11-14 (2012).
- T. Suda, <u>N. Toyoda</u>, K. Hara, I. Yamada, Development of Cu Etching Using O₂ Cluster Ion Beam under Acetic Acid Gas Atmosphere, 査読有, Japanese Journal of Applied Physics, **51**, 08HA02-1-5, (2012).
- <u>N. Toyoda</u>, I. Yamada, Metal etching with reactive gas cluster ion beams using pickup cell, 査読有, AIP conference proceedings, 1496, 288-291 (2012).
- 4. <u>N. Toyoda</u>, I. Yamada, Gas cluster ion beam technology for nano-fabrication, 査読無,

Advances in Science and Technology, 82, 1-8 (2012).

- <u>N.Toyoda</u>, I.Yamada, Evaluation of charge state of gas cluster ions by means of individual crater observations, 査読有, Nuclear Instruments and Methods in Physics Research, Section B, **307**, 269-272 (2013).
- A.Yamaguchi, R.Hinoura, <u>N.Toyoda</u>, K.Hara, I.Yamada, Gas cluster ion beam etching under acetic acid vapor for etch-resistant material, 査読有, Japanese Journal of Applied Physics, **52**, 05EB05 (2013)
- <u>N.Toyoda</u>, A.Fujimoto, I.Yamada, Magnetic properties of Fe₇Co₃ films with gas cluster ion beam irradiations, 査読有, Journal of applied physics, **113**, 17A328 (2013).
- K.Sumie, <u>N.Toyoda</u>, I.Yamada, Surface morphology and sputtering yield of SiO₂ with oblique-incidence gas cluster ion beam, 査 読有, Nuclear Instruments and Methods in Physics Research, Section B, **52**, 290-293 (2013).
- <u>N.Toyoda</u>, A.Fujimoto, I.Yamada, Irradiation effects of gas cluster ion beams on co-fe films, 査読有, Japanese journal of applied physics, 52, 06GF01 (2013).

[学会発表](計 18件)

- 中桐基裕、豊田紀章、山田公、雰囲気ガス 中GCIB照射された有機材料のXPSによる 評価、2011年秋季応用物理学会学術講演 会、2011年8月30日、山形大学(山形県)
- 2. 中桐基裕、豊田紀章、山田公、GCIB 照射 損傷のクラスターサイズ依存性の In-situ XPS による評価、2012 年春季応用物理学 会学術講演会、2011 年 3 月 17 日、早稲田 大学(東京都)
- 3. <u>N. Toyoda</u> and I. Yamada, Surface modification and interaction with gas cluster ion beams, 20th International Conference on Ion Beam Analysis(招待講演)、2011 年 4 月 15 日、イタペマ (プラジル)
- 4. <u>N. Toyoda</u>, T. Furuya and I. Yamada, What is the key parameter of electron ionization on crater formations on solid surface ?, 11th Workshop on Cluster Ion Beam Technology, 2011 年 12 月 5 日, 京都大学品川オフィス (東京都)
- N. Toyoda and I. Yamada, Gas cluster ion beam technology for nanofabrication, 4th international conference smart materials, structures and systems(招待講演), 2012年 6月11日,モンテカッティーニテルメ(イタリ ア)
- <u>N. Toyoda</u> and I. Yamada, Gas cluster ion beam etching of metals with pick-up cell, 19th international conference on ion implantation technology, 2012年6月25日, ヴァリャドリード(スペイン)

- <u>N. Toyoda</u>, Nano-scale Surface Modification and Ion Induced Chemical Reactions with Gas Cluster Ion Beams, 2nd annual world congress of nano-science and technology (招待講演), 2012 年 10 月 28 日, 青島(中 国)
- 8. <u>N. Toyoda</u>, Etching of FeCo films with gas cluster ion beams and their magnetic properties, 12th Joint MMM-Intermag Conference 2013, 2013 年 1 月 15 日、シカ ゴ(米国)
- 山口 明良、日野浦 諒、<u>豊田 紀章、</u>原 謙一、山田 公、ガスクラスターイオンビーム による磁気トンネル接合素子下の平坦化、 2013 応用物理学会春季学術講演会、2013 年3月29日、神奈川工科大学
- 10. 藤本 昌宏、木村 旭、<u>豊田 紀章</u>、山田 、 ガスクラスターイオンビームによる磁性膜の 低損傷加工、2013 応用物理学会春季学術 講演会、2013 年 3 月 29 日、神奈川工科大 学
- 日野浦 諒、山口 明良、<u>豊田 紀章、</u>原 謙一、山田 公、ガスクラスターイオンビーム エッチング後の MRAM 材料の表面状態評 価、2013 応用物理学会春季学術講演会、 2013 年 3 月 29 日、神奈川工科大学
- <u>N.Toyoda</u>, I.Yamada, Nano-scale surface modification and ion induced reactions with gas cluster ion beams, 2013 春季ヨーロッパ 材料学会(E-MRS) (招待講演), 2013 年 5 月 28 日, ストラスプール(フランス)
- 13. R. Hinoura, <u>N. Toyoda</u>, I. Yamada, In-situ XPS study of GCIB etching for materials used in STT-MRAM, ドライプロセスシンポ ジウム 2013, 2013 年 8 月 30 日, 済州島(韓 国)
- 藤本 昌宏、<u>豊田 紀章</u>、山田 公、ガスク ラスターイオンビーム照射によるされた DLC 膜の表面の構造改質, 2013 応用物理学会 秋季学術講演会, 2013 年 9 月 19 日, 同志 社大学(京都)
- 15. 木村 旭、富田 淳、<u>豊田 紀章</u>、谷 弘詞、 山田 公、GCIB 照射によるメディア保護膜 の表面平坦化効果, 2013 年 9 月 19 日, 同 志社大学(京都)
- 16. <u>N.Toyoda</u>, K. Sumie, A. Kimura, I.Yamada, Ripple formations by gas cluster ions in ambient reactive gas, 2013 JSAP-MRS ジョイ ントシンポジウム, 2013 年 9 月 20 日, 同志 社大学(京都)
- 17. <u>N. Toyoda</u>, I.Yamada, Low-damage and high-rate sputtering of organic materials with GCIB under H₂O vapor environment, Surface modification of materials by ion beams 2013, 2013 年 9 月 18 日, クシャダシ (トルコ)
- N. Toyoda, A. Yamaguchi, A. Fujimoto, R. Hinoura and I. Yamada, TEM study of irradiation effects of GCIB, 第 23 回日本 MRS年次大会、2013年12月9日、横浜(神)

奈川)	
〔図書〕(計0件)	
〔産業財産権〕 出願状況(計0件)	
名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別:	
取得状況(計0件)	
名称: 発明者: 権利者: 種類: 番号: 取得年月日: 国内外の別:	
〔その他〕 該当無し	
6.研究組織 (1)研究代表者 豊田 紀章(Noriaki Toyoda) 兵庫県立大学大学院工学研究科・准教授 研究者番号:382276	
(2)研究分担者 該当なし	
(3)連携研究者 該当なし	