科学研究費助成事業

研究成果報告書

平成 26 年 6月 16日現在

機関番号: 1 4 5 0 1
研究種目:基盤研究(C)
研究期間: 2011~2013
課題番号: 2 3 5 4 0 4 0 9
研究課題名(和文)高圧でのクリーンな物性制御と分光実験による、量子臨界点近傍の電子構造解明
研究課題名(英文)Electronic structures near quantum critical points studied by infrared spectroscopy under high pressure
研究代表者
岡村 英一 (Okamura, Hidekazu)
神戸大学・理学(系)研究科(研究院)・准教授
研究者番号:00273756
交付決定額(研究期間全体): (直接経費) 3,900,000円、(間接経費) 1,170,000円

研究成果の概要(和文):この研究では、数万気圧の高圧力下で超伝導を示す物質であるSrFe2As2およびCeRhIn5を対象とし、その高圧下での電子状態、つまりどのようなエネルギーを持った電子がどれぐらい存在するか、などの情報を、赤外線を用いた実験によって調べた。数万気圧の高圧力はダイヤモンドアンビルセル(DAC)という装置を用いて発生し、DACに封入された試料の赤外分光を正確に行うため、大型放射光施設SPring-8の高輝度な赤外線を光源として、実験を行った。その結果、圧力と共に電子の状態が大きく変化する様子が、赤外線領域の光学応答によって観測され、その解析から電子状態に関する詳しい考察を行った。

研究成果の概要(英文): In this work, the electronic structures of SrFe2As2 and CeRhIn5 were studied under high pressure up to 8 GPa (80,000 bar) and at low temperatures down to 6 K using infrared spectroscopy. These compounds become superconducting under high pressure above 4 GPa (SrFe2As2) and 2 GPa (CeRhIn5), and have attracted a lot of recent interest from condensed matter physicists. To generate high pressure, a d iamond anvil cell (DAC) was used, and to perform infrared spectroscopy on a small sample contained in DAC, the highly bright, infrared synchrotron radiation from SPring-8 was utilized. The measured results showe d that the electronic structures of these compounds are strongly affected by the external pressure, which were analyzed in detail.

研究分野: 数物系科学

科研費の分科・細目:物理学・物性||

キーワード: SrFe2As2 CeRhIn5 赤外分光 シンクロトロン放射光 高圧力 ダイヤモンドアンビルセル 電子状態

1.研究開始当初の背景

低温で磁気秩序した物質に対して圧力や化 学組成などの制御パラメーターを変化させ た際に観測される「量子臨界点(QCP)」が注 目を集めている。なぜなら QCP 近傍では、従 来の理論的枠組みで説明できない金属状態 (非フェルミ液体)や非従来型(異方的)超 伝導、電子の局在・非局在転移などの特異な 物性が観測されるからである。その起源に関 して、QCP 近傍で顕著な量子ゆらぎ(零点振 動)に伴う磁気的な揺らぎや価数の揺らぎが 重要であると推測されているが、その本質は 良く理解されていない。さらにこの現象は遷 移金属化合物(d 電子系) 希土類化合物(f 電子系)、有機伝導体(p電子系)など幅広い 物質群で観測され、物質の詳細に依らない普 遍的な物理メカニズムの存在を強く示唆す る。よってその解決が強く望まれており、活 発な実験・理論研究が行われている。

このようなQCP近傍の異常物性は、これま で主に電気抵抗や磁化など基礎物性量の測 定や、NMR などの磁性プローブを中心に行 われてきた。一方で物性のミクロな起源の理 解のためには、フェルミ準位(*E*_F)付近の「電 子構造」、つまりエネルギー軸上での状態密 度が重要であることも広く認識されている。 電子構造の研究には赤外分光、光電子分光や トンネル分光などのスペクトロスコピー手 法が用いられるが、光電子、トンネル分光で は高圧発生装置に封入された試料の測定が 困難なため、QCP の制御パラメーターとして 化学組成を用いた研究しか行われていない。 しかし組成制御のため部分的な元素置換を 行うと、結晶格子の乱雑さの影響が物性に影 響するため、実験結果から電子構造の本質を 見極めるのが容易でない。一方赤外分光では 高圧発生装置での実験が可能であり、外部圧 力で原子間隔を等方的に縮めることにより、 電子混成やバンド幅などのパラメーターを クリーンに(結晶格子を乱さず)制御できる。 当時、申請者らは高圧発生装置ダイヤモン ド・アンビルセル (DAC)と、大型放射光施 設 SPring-8 の高輝度な赤外線を用いた独自の 高圧赤外分光技術を発展させていた。この手 法は、高圧で QCP を示す物質にも応用できる。

2.研究の目的

以上を受け、本研究では低温で圧力誘起のQ CPと特異物性を示す物質例として、最近特 に注目されているd電子系物質SrFe₂As₂ (Sr122)及びf電子系物質CeRhIn₅(Cel15) に着目した(両物質の詳細は次項参照)。そ して両物質に対して申請者らが独自に発展 させてきた、SPring-8の高輝度放射光を用い た高圧下赤外分光法を適用した。すなわち両 物質の赤外・遠赤外領域($\hbar\omega$ =0.01~1eV) の光反射スペクトル $R(\omega)$ を、10 GPa までの外 部圧力、液体He 温度までの範囲で測定した。 そして得られた $R(\omega)の解析より電荷励起ス$ $ペクトル(光学伝導度)<math>\sigma(\omega)を導き、フェル$ ミ準位近傍でのエネルギーの関数としての電子構造を明らかにすることを目標とした。

3.研究の方法

(研究対象について)圧力誘起 QCP の近傍 での特異物性の発現は、幅広い物質群で観 測される普遍性の高い現象である。このた め本研究では d 電子系の例として Sr122、f 電子系の例として Ce115 の両方を研究対象 とした。Sr122 は鉄系超伝導体の一つであ り、4 GPa 付近の圧力下で T_c=34 K という 高い転移温度の超伝導を示す[Kotegawa 他、 JPSJ 78 (2009) 013709]。また Ce115 は低温 で大きな有効質量を持つ「重い電子系」物 質であり、2 GPa の圧力で Tc=2.2 K の非従 来型超伝導などの特異物性を示す(例えば Park 他、Nature 440, (2006) 65)。様々な基礎 物性、NMR, de Haas - van Alphen 効果など の測定が行われている。いずれの物質も常 圧のσ(ω)はすでに詳しく報告されており、 それと比較しつつ高圧でのσ(ω)を研究する。 単結晶試料は Sr122 については神戸大の菅 原より、Ce115 については米国ロスアラモ ス研究所より試料提供を受けた。また上述 の2物質だけでなく、CeCoIn₅, PrFe₄P₁₂, YbNi₃Ga₉, YbCu₂Ge₂など、他のf電子系物 質についても、高圧下の赤外分光実験を行 った。

(測定とデータ解析について)本研究では 高圧を発生するためにダイヤモンド・アン ビルセル (DAC) と呼ばれる装置を用いた。 DAC は一対のダイヤモンドの間に試料を挟 んで封入して加圧する装置で、数万 GPa から 最高で数100万GPaという圧力を発生するこ とができる。我々の研究では最高 20 GPa 程 度の圧力で実験を行うが、この場合はダイヤ の先端径が 0.6~0.8 mm 程度になり、そこに封 入される試料のサイズも 0.1~0.2 mm 程度と 小さくなる。DAC の制限された試料空間に封 入されたこのような小さな試料に、波長が長 く回折効果の大きい赤外線を照射して R(w) を正確に測定するのは、低輝度な通常の赤外 光源(高温物体からの黒体輻射を利用する 「熱光源」)では容易でない。そこで本研究 では、大型放射光施設 SPring-8 の赤外ビーム ライン BL43IR において、高輝度な赤外シン クロトロン放射光を光源として、DAC に封入 された試料の高圧低温における赤外、遠赤外 反射スペクトル R(ω)を測定した。そして得ら れた $R(\omega)$ データの Kramers-Kronig (KK) 解 析から電荷励起スペクトル(光学伝導度) $\sigma(\omega)$ を導き、さらに $E_{\rm F}$ 近傍の電子構造や自由 キャリヤのダイナミクス、それらの圧力によ る変遷などを明らかにした。なお、この KK 解析に際しては、DAC の実験特有の条件、す なわち R(w)が試料とダイヤモンドの境界面 で測定される条件のため、真空よりもずっと

大きなダイヤモンドの屈折率を考慮する必要がある。本研究では、ダイヤを考慮した KK解析手法についても研究した。

4.研究成果

ここでは当初の研究計画でターゲットとした2つの物質 Sr122 と Ce115、そして CeCoIn₅ での結果について述べる。

<Sr112>

この物質については、多くの先行研究により、 常圧の反強磁性転移温度(ネール温度)であ る 200 K 以下でσ(ω)に、スピン密度波(SDW) 形成による約0.15 eV 程度の幅の擬ギャップ が現れることが報告されていた。そして Sr. Fe のいずれかの元素を部分的に化学置換し た、常圧で超伝導を示す系については、その 超伝導ギャップもσ(ω)に見いだされていた。 我々の実験では、常圧から6GPaまでの圧力、 室温から 9 K までの温度範囲で測定を行い、 σ(ω)を求めた。その結果、ず加圧と共に SDW による擬ギャップが抑制された。Sr122 は圧 力が約4 GPa で超伝導になるが、4 GPa では ギャップはごくわずかにその兆候が残って いるのみであり、6 GPa では消滅した。この 結果は、加圧によりネール温度が低下してい くこと、つまり反強磁性秩序が抑制されてい くこととコンシステントである。一方4 GPa 以上の圧力では Sr122 が超伝導になっている はずであるが、σ(ω)に超伝導ギャップを観測 することはできなかった。その原因ははっき りしないが、一つの可能性として、測定した スペクトル領域が十分低エネルギーまで伸 びていなかったことが考えられる。常圧で σ(ω)に超伝導ギャップを観測した先行研究 では、いずれも50-60 cm⁻¹程度の低波数まで 測定が行われているが、我々の高圧実験では DAC を用いる制約により、測定できるスペク トル領域は200 cm⁻¹より高波数に限られてい た。以上の結果、特に高圧下における擬ギャ ップの変遷を中心に論文にまとめて出版し た(業績リスト発表論文等の)。

< Ce115 >

CeRhIn₅については、同じ結晶構造を持ち、 常圧で既に超伝導を示す類似物質である CeCoIn、と共に測定を行った。先行研究によ リ、CeCoIn₅では常圧でσ(ω)の中赤外領域に、 顕著な吸収ピークが観測されていた。この中 赤外ピークは、フェルミ準位近傍に形成され る、f電子と伝導電子の混成(cf混成)状態 による光吸収が原因であり、これまで常圧の 実験では非常に多くのCeおよびYb化合物で 観測されている。一方 CeRhIn5 においてはそ のようなピークはほとんど観測されていな かった。我々の今回の研究では、常圧から8 GPa までの圧力、室温から 6 K までの温度範 囲で測定を行った。その結果、CeCoIn、の中 赤外ピークは圧力増加と共に高エネルギー 側へ徐々にシフトすると共に、幅も増大した。 一方 CeRhIn₅では、2 GPa までの加圧によっ

て CeCoIn₅ と同様の中赤外ピークが現れた。 そしてさらなる加圧により、やはり CeCoIn₅ と同様に中赤外ピークが高エネルギー側へ シフトすると共にブロードになった。これら の結果は、常圧では CeCoIn₅ よりも CeRhIn₅ の cf 混成がずっと弱かったが、加圧によって 両方の物質で cf 混成が強まっていき、しかし CeCoIn₅ よりも CeRhIn₅で cf 混成が弱い状態 は保たれたままで変遷したと解釈できる。現 在、スペクトル変化の定量的な解析を進めて おり、両物質における cf 混成とその圧力依存 性について、ミクロな情報を得ようと努めて いる。また本年(2014年)夏の強相関電子系 国際会議で発表すると共に、なるべく早く論 文にまとめたいと考えている。

<ダイヤモンドの影響を考慮した KK 解析手 法の開発 >

研究方法で述べたように、本実験では DAC 中で測定を行うため R(ω)は試料とダイヤモ ンドの境界面で測定される。これは通常の実 験条件、すなわち試料と真空、試料と空気の 境界面での測定とは大きく異なる。なぜなら、 ダイヤモンドの屈折率は 2.4 と真空の 1.0 よ りもずっと大きく、これが測定された *R*(ω) に大きく影響するからである。また、*R*(ω)か らσ(ω)を求める際に広く用いられている KK 解析についても、その土台となる「KK 関係 式」自身が、真空の時とは異なる。以上を受 け、本研究ではダイヤの屈折率を考慮に入れ た KK 解析手法を開発した。この方法は、デ ータにある種の近似を適用し、かつ DAC で 測定した R(ω)だけでなく、真空中で測定した $R(\omega)$ から通常の KK 解析で求めた $\sigma(\omega)$ をも、 解析に用いる方法である。この方法は近似的 方法ではあるが簡便で、今後も DAC を用い た高圧での赤外分光の解析手法として威力 を発揮すると期待される。この手法について は、発表論文のに詳しく報告した。

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計7件)

H. Okamura, K. Shoji, M. Miyata, H. Sugawara, <u>T. Moriwaki</u>, Y. Ikemoto, Pressure Supression of Spin-Density-Wave gap in the Optical Conductivity of SrFe₂As₂, J. Phys. Soc. Jpn. **82** (2013) 074720 (5 pages). DOI:10.7566/JPSJ.82.074720、查請有.

S. Kimura and <u>H. Okamura</u>, Infrared and Terahertz Spectroscopy of Strongly Correlated Electron Systems under Extreme Conditions. J. Phys. Soc. Jpn. **82** (2013) 021004 (28 pages). DOI: 10.7566/JPSJ.82. 021004 查読有.

<u>H. Okamura</u>, N. Ohta, A. Takigawa, I. Matsutori, K. Shoji, K. Miyata, M.

Matsunami, H. Sugawara, C. Sekine, I. Shirotani, H. Sato, <u>T. Moriwaki</u>, Y. Ikemoto, Z. Liu, G. L. Carr, Pressure suppression of unconventional charge-density-wave state in PrRu₄P₁₂ studied by optical conductivity, Phys. Rev. B **85** (2012) 205115 (5 pages). DOI: 10.1103/PhysRevB.85.205116.查読有. <u>H. Okamura</u>, A simple method for the Kramers-Kronig analysis of reflectance data measured with diamond anvil cell, J. Phys. Conf. Ser. **359** (2012) 012013. 查読有.DOI: 10.1088/1742-6596/359/1/012013 (6 pages)

H. Okamura, R. Kitamura, M. Matsunami, H. Sugawara, H. Harima, H. Sato, <u>T. Moriwaki</u>, Y. Ikemoto, T. Nanba, Optical Conductivity and Electronic Structure of CeRu₄Sb₁₂ under High Pressure, J. Phys. Soc. Jpn. **80** (2011) 084718.DOI:0.1143/JPSJ.80.084718.査読有 (9 pages)

H. Okamura, I. Matsutori, A. Takigawa, K. Shoji, K. Miyata, M. Matsunami, H. Sugawara, H. Sato, C. Sekine, I. Shirotani, T. <u>Moriwaki</u>, Y. Ikemoto, T. Nanba, Suppression of Metal-Insulator Transition in PrRu₄P₁₂ under High Pressure Studied by Infrared Spectroscopy, J. Phys. Soc. Jpn. **80** (2011) SA092. DOI: 10.1143/JPSJS.80SA. SA092. 査読有.(3 pages)

<u>岡村英一</u>、難波孝夫、松波雅治、<u>森脇太</u> <u>郎</u>、池本夕佳、「高圧下の赤外分光による 希土類化合物の電子状態研究」、日本放射 光学会誌 **24** (2011)302-311. 査読有.

[学会発表](計43件、主要発表のみ記載) <u>岡村英一</u>他、エキシトニック絶縁体 Ta₂NiSe₅の高圧下における光学伝導度と 電子状態、日本物理学会年次大会 (2014.3.29東海大学)

<u>岡村英一</u>、赤外分光で探る高圧下の物質 の電子状態、未来を開く高圧力科学技術 セミナー「高圧力と分光測定技術」 (2014.3.26日本大学)

<u>岡村英一</u>他、YbNi₃Ga₉の高圧下における 光学伝導度と電子状態、日本放射光学会 年会(2014.1.12 広島国際会議場)

<u>H. Okamura</u>, "High pressure IR studies of strongly correlated electron systems at SPring-8", WIRMS 2013 (2013.11.11, $\neg \neg$ $\neg \land \vdash \neg \lor \lor$)

<u>H. Okamura</u>, Infrared spectroscopy using synchrotron radiation source, Physical Society of The Philippines (2013.10.24, Cebu, Philippines)

<u>H. Okamura</u> 他、 Pressure-induced hybridization states in CeRhIn₅ and CeCoIn₅ studied by optical conductivity (2013.8.6, SCES 2013, Tokyo.)

<u>岡村英一</u>他、CeXIn₅ (X=Rh, Co)の高圧に おける光学伝導度と電子状態、高圧討論 会(2012.11.7、大阪大学)

<u>H. Okamura</u>, Pressure Suppression of Unconventional CDW State in $PrRu_4P_{12}$ studied by optical conductivity, LEES 2012 (2012.7.23, Napa, USA.)

<u>岡村英一</u>他「CeXIn₅ (X=Rh, Co)の高圧 下電子状態の赤外分光による研究 II」日 本物理学会年次大会(2012.3.25、関西学 院大学)

<u>
岡村英一</u>「高圧下の赤外分光による強相 関電子系の電子状態研究」第52回高圧討 論会(2011.11.9沖縄キリスト教学院大学) <u>岡村英一</u>他、「SrFe₂As₂の高圧下における 光学伝導度と電子状態 II」日本物理学会 秋季大会(2011.9.24 富山大)

<u>H. Okamura</u>, High pressure infrared studies of strongly correlated electron materials, WIRMS 2013 (2011.9.5 Trieste)

<u>岡村英一</u>「高圧低温での赤外分光による f電子状態の研究」科研費新学術領域「重 い電子系の形成と秩序化」研究会 (2011.6.24物性研)

〔図書〕(計0件)

〔産業財産権〕 該当無し

〔その他〕

ホームページ等

社会に対して研究成果を発信する一環として、我々の研究成果やその理解の助けとなる 基礎的知識などの情報を、神戸大学の岡村グ ループウェブサイト上にて公開している。 http://www.phys.sci.kobe-u.ac.jp/~infrared/

6.研究組織

(1)研究代表者
 岡村 英一(OKAMURA, Hidekazu)
 神戸大学・大学院理学研究科・准教授
 研究者番号:00273756

(2)連携研究者

森脇 太郎 (MORIWAKI, Taro) 高輝度光科学研究センター・副主幹研究員 研究者番号:90372143