科学研究費助成事業

研究成果報告書

科研費

平成 27 年 6 月 10 日現在

機関番号: 11301 研究種目: 基盤研究(B) 研究期間: 2012~2014 課題番号: 24360261 研究課題名(和文)NdFeBおよびナノコンポジット単一粒子の磁化挙動

研究課題名(英文)Magnetization dynamics in microstructed NdFeB single dot

研究代表者

北上 修(Kitakami, Osamu)

東北大学・多元物質科学研究所・教授

研究者番号:70250834

交付決定額(研究期間全体):(直接経費) 12,400,000円

研究成果の概要(和文):本研究では,NdFeB磁石の保磁力発生機構を調べるために,単一NdFeBドットの磁化反転挙動 を明らかにすることを目的とした.高感度磁化検出および大振幅ナノ秒パルス磁場発生技術を確立し,単一ドットの磁 化ダイナミクスを調べた.ナノ秒および直流いずれの磁場でも同一領域を起点に反転核が形成されるが,その後の磁区 成長に違いが観測された.後者では隣接磁区が連結し網目状に成長するが,前者では等方的に膨張する.この違いは, ドット内の複数のエネルギー障壁を考慮した熱揺らぎ理論により理解される.以上の結果より,エネルギー障壁の低い 領域の局所構造を明らかにし,それを取り除くことが高保磁力化に有効であることが判った.

研究成果の概要(英文): The aim of this study is to elucidate the magnetization dynamics of single NdFeB dot. By combining our highly sensitive Hall effect magnetometry with the newly developed large amplitude ns pulse field generator, we have traced magnetization reversal process in single dot after application of slowly varying dc fields and ns pulse fields. Nucleation of reversed domains of about 100 nm in diameter takes place at same points for both cases, but the significant difference is observed in their following expansion. In the dc field case, neighboring nucleated domains are linked to each other, resulting in a maze-like domain structure, while nucleated domains tend to expand isotropically in the pulse field case. Such difference depending on application fields can be explained by assuming multiple energy barriers for magnetization reversal. This result leads us to believe that elimination of defects or something which lower the energy barrier contributes to the enhancement of coercivity.

研究分野:磁気工学

キーワード: 永久磁石 NdFeB 保磁力 微細加工 パルス磁場 反転ダイナミクス

1.研究開始当初の背景

電気自動車をはじめとする環境負荷低減 技術に対する期待の高まりに伴い,高い磁気 エネルギー積を有する永久磁石材料の開発 が切望されている.現在,最高性能を有する 材料は Nd₂Fe₁₄B(以降 NFB)であるが,その保 磁力は理論予測の 20%程度に留まる.今後の 磁石性能の向上には保磁力決定機構を解明 することが必須であるが,半世紀以上にわた り研究が停滞しているのが現状である.その 主な原因は,磁石の結晶粒子間の相互作用に 加え,複雑な組織が重なっていること,さら には磁化過程を支配する反転核生成・伝播現 象がナノ秒オーダーの高速現象であること であり,従来の磁気測定技術では到底本質に 迫ることは不可能であった.

2.研究の目的

(1) NFB の保磁力決定機構の解明には,磁石 構成要素である単結晶粒の挙動を定量的に 把握する必要がある.我々はこれまでに, SQUIDの8桁以上の感度を有する磁化検出技 術を確立してきた.この技術をNFB単粒子に 適用し,その磁化過程を明らかにすることを 第一の目的とする.

(2) 磁化反転開始時の核生成・伝播過程をナ ノ秒の時間スケールで追跡できるよう,大振 幅高速パルス磁場発生技術を確立し,上記高 感度磁化検出技術と組み合わせ,単一 NFB 粒子の磁化反転ダイナミクスを調べること を第二の目的とする.

3.研究の方法

(1) 高品質 NFB エピタキシャル成長技術,ダ メージフリーNFB 微細加工プロセスの確立 により 微小 NFB ドットを作製し,異常ホー ル効果を原理とする超高感度磁化検出法に より NFB 単一粒子の準静的磁化反転過程を 調べる.

(2) 同軸ケーブルの充放電を利用した高速パルス磁場発生装置の構築,さらに Blumlein 線路法による大振幅化への挑戦.目標は最大磁場振幅 H_{pulse} 10 kOe,パルス立上り時間 T_{rise} < 5 ns.

(3) 上記(1), (2)の組合せによる,ナノ秒領域 単一 NFB ドットの磁化ダイナミクスの検討.

(4) 上記(1)~(3)と並行し,磁気粘性の観点から NFB 磁化過程を探る手法の確立.

4.研究成果

 NFB エピタキシャル成長技術に関しては, MgO(001)単結晶基板上に Mo(001)バッファ 層を介在させることにより,NdFeB(001)のエ ピタキシャル成長に成功した. さらに Mo(001)バッファ層上に1,2原子層のNd層を 介在させることにより,結晶配向性が著しく 向上することを確認した.

(2) NFB エピタキシャル膜の微細加工につい て検討した.電子線リソグラフィとイオンエ ッチングにより微細ドットを作製し,全領域 にわたり微細加工前後の微細構造の変化を 調べた.その結果,加工による磁区の変化は 全く観察されず,当初懸念された加工ダメー ジ,特にエッチングダメージの影響は無視し 得ることが確かめられた.このようにして作 製した単-NFBドット(直径3µm)の異常ホー ル電圧の磁場依存性を図1の実線に示す.単 一粒子の磁化挙動を高感度に測定できるこ とがわかる.

図1単一 NFB ドット(直径 3µm)の磁化曲線. 実線は直流磁場中で異常ホール効果測定した.記号, は各々直流磁場,パルス磁場 (幅 6 ns)印加後の MFM 像から評価した.

(3) 同軸ケーブルを用いた Blumlein 線路,そ して多段化したアヴァランシェ・トランジス タを組み合わせ,立上り時間 3.2 ns,最大 500 Vのパルス電圧発生に成功した.このパルス 発生器を図2のマイクロコイルに繋ぐことに より,コイル中心に設置した NFB ドット位置 で最大 10 kOe のパルス磁場の発生に成功し た.

AHE electrode 図 2 パルス磁場実験用素子の SEM 像 . AHE 電極上ドット中心と直上のマイクロ コイル中心が一致.

(4) 上記(1)~(3)で構築した技術を組み合わせ, 単一NFBドットの磁化反転過程を調べた.直 流磁場とパルス磁場(半値幅 6 ns)を印加し た際の磁気力顕微鏡(MFM)像より評価した 磁化曲線を図1に示す.パルス磁場では明ら かに磁化の熱揺らぎが抑制され,保磁力が著

図3 直流磁場 H_{dc} , パルス磁場 H_{pulse} 印加後の MFM 像. (暗部が反転領域) (a) H_{dc} = 7.0 kOe, (b) H_{pulse} = 8.7 kOe. (c) H_{dc} = 4.8 kOe.

しく増加している.両者の差は同程度の磁場 印加後の MFM 像 (図 3(a), (b)) でも明らかで ある.また同程度の減磁状態を比較した結果 が図 3(b),(c)である 磁場印加に伴う磁区構造 の変化を追跡するため,ナノ秒パルス磁場を 繰り返し印加した場合そして直流磁場を準 静的に変化させた場合を比較した.いずれの 場合も,ほぼ同一領域(サイズ~0.1µm)を起 点に反転核が形成されるが,その後の反転磁 区の成長には明らかな差異が観察された.後 者では隣接磁区が連結しネットワーク状に 成長するのに対し,前者では反転磁区が等方 的に膨張する傾向にある.磁場印加時間に依 存したこのような磁化反転様式の変化は,単 - NFB ドット内の複数のエネルギー障壁を 考慮した熱揺らぎ理論により理解される.こ れらの結果より,エネルギー障壁の低い領域 の局所構造を探り,それを取り除くことが今 後の高保磁力化に有効であることが判った.

(5) NFB 磁石の磁化反転機構に関する新しい 知見を得るために , 熱揺らぎに基づくエネル ギー障壁の評価法を確立した.有限温度下で は磁化はランダムに揺らぎ,障壁が存在して も確率的に反転する.この障壁の関数形は反 転パスに依存し、逆に熱揺らぎを解析すれば、 障壁関数ひいては反転パスを知ることがで きる.一般に逆磁場Hにおける障壁はE_b(H) = $E_0[1 - H/H_0]^n$ と表され, 一斉回転の場合 n = 2or 3/2,磁壁ピニングでは n=1 となる. 障壁 関数の情報は,磁気粘性と保磁力の磁場印加 時間依存性から以下のように得られる.前者 では揺らぎ場 H_f は次式で与えられ,粘性係 数 Sの測定より障壁の磁場微分を求めること ができる.但し,Sは磁化の対数時間微分で 与えられる磁気粘性係数である.

$$H_{\rm f} = -\frac{k_{\rm B}T}{\partial E_{\rm b}(H)/\partial H} = \frac{\Delta H}{\Delta \ln \left(S/t\right)} \qquad (1)$$

図 4(b)の破線は,2種類の NFB 試料(Nd 粒界 拡散処理の有無)の $(\partial E_b / \partial H) / k_B T$ を示す. 方,Neel-Arrhenius 則より導出される Sharrock の関係は次式で与えられ,これにより NFB 薄膜の保磁力の時間依存性をフィッティン グした結果が図 4(a)の実線である.

$$H_{\rm c}(t)/H_0 = 1 - \frac{k_{\rm B}T}{E_0} \ln\left(\frac{f_0 t}{\ln 2}\right)$$
 (2)

指数 $n = 0.6 \sim 2$ の全範囲で良好にフィットで き,各々のn に応じて E_0 , H_0 を決定できる. $E_b(H) = E_0[1 - H/H_0]^n$ を磁場微分すると

$$\frac{\partial E_{b}}{\partial H}\Big|_{H=H_{c}} = n \frac{E_{0}}{H_{0}} \left(1 - \frac{H_{c}}{H_{0}}\right)^{n-1}$$
(3)

となり、これに図4(a)のフィッティングパラメ タを入れた曲線が図4(b)の実線であり、粘性実 験から得られた破線との交点が求めるべき指 数nである.両試料の磁気特性は大きく異なる ものの、図4(b)から決定された指数はNd拡散 処理有の試料で $n=1.2^{+0.4}_{-0.2}$,処理無の場合 $n=1.2^{+0.5}_{-0.3}$ でありほぼ差異は認められない.こ の結果が示唆することは、Nd拡散処理により 巨視的磁気特性が変化しても、基本的な反転 過程は変化せず、磁壁ピニングが保磁力を支 配していることである.

図4 (a) NFB試料の保磁力の磁場印加時間依存性.実線はフィッティング.(b) 障壁関数の磁場微分の指数n依存性.破線は式(1)による実測結果,実線は式(3)に基づく曲線.

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計24件)

R.Goto, <u>S.Okamoto</u>, <u>N.Kikuchi</u>, <u>O.Kitakami</u> Energy barrier analysis of Nd-Fe-B thin films Journal of Applied Physics, 査読有(印刷中)

<u>N.Kikuchi</u>, Y.Suyama, <u>S.Okamoto</u>, <u>O.</u> <u>Kitakami</u>, <u>T.Shimatsu</u>, Quasi-ballistic magnetization switching in Co/Pt dots with perpendicular magnetization, Applied Physics Letters, 查読有, **104** (2014) 112409-1~ 112409-4

DOI: 10.1063/1.4869150

<u>N.Kikuchi</u>, M.Furuta, <u>S.Okamoto</u>, <u>O.</u> <u>Kitakami</u>, <u>T.Shimatsu</u>, Quantized spin waves in single Co/Pt dots detected by anomalous Hall effect based ferromagnetic resonance, Applied Physics Letters, 查読有, **105** (2014) 242405-1~242405-4 DOI: 10.1063/1.4904225

<u>岡本聡</u>,ナノ磁性体における磁化反転ダ イナミクスとその応用,日本磁気学会誌 まぐね,査読有,9(2014)76~83 http://www.magnetics.jp/archive/journal/mag ne.html

N.Kikuchi, Y.Suyama, S.Okamoto, O.

<u>Kitakami</u>, Pulse Rise Time Dependence of Switching Field of Co/Pt Multilayer Dot, Electronics and Communication in Japan, 査 読有, **96** (2013) 9~14 http://onlinelibrary.wiley.com/doi/10.1002/ecj .11569/pdf

<u>北上修</u>,磁性微粒子の相安定性,磁化挙動, そして磁気記録への応用,日本磁気学会 誌まぐね,査読有,8(2013)71~80 http://www.magnetics.jp/archive/journal/ magne.html

<u>S.Okamoto,N.Kikuchi</u>, M.Furuta, <u>O.</u> <u>Kitakami</u>, <u>T.Shimatsu</u>, Switching behaviors and its dynamics of a Co/Pt nanodot under the assistance of rf fields, Physical Review Letters, 查読有, **109** (2012) 237209-1 ~237209-4 DOI: http://dx.doi.org/10.1103/ PhysRevLett. 109.237209

<u>T. Shimatsu</u>, H. Kataoka, K. Mitsuzuka, H. Aoi, <u>N. Kikuchi, O. Kitakami</u>, Dry-etching damage to magnetic anisotropy of Co-Pt dot arrays characterized using anomalous Hall effect, Journal of Applied Physics, 查読有, **111** (2012) 07B908-1~07B908-4 DOI: 10.1063/1.3676061

[学会発表](計83件)

東佑 他, Nd₂Fe₁₄B 薄膜の作製ならびに微 視的・動的磁化過程評価のための微細加工 の検討,電気学会マグネティクス研究会, 2014.12.12~12.13,日本大学(千葉・船橋)

R.Goto et al. Energy barrier analyses on highly oriented Nd-Fe-B thin films with and without Nd overlayer , The 59th Annual Magnetism and Magnetic Materials (MMM) Conference, 2014.11.3~11.7, Honolulu (USA)

<u>岡本聡</u>他, 高磁気異方性材料における高 感度磁気計測と磁化反転ダイナミクス(招 待),日本金属学会, 2014.3.21~3.23, 東京工 業大学(東京)

R.Goto et al. Growth of highly oriented Nd-Fe-B films and its magnetization reversal behaviors, The 58th Annual Magnetism and Magnetic Materials (MMM) Conference, 2013.11.4~11.8, Denver (USA)

門ノ沢和也 他,永久磁石の磁化反転実験 のためのナノ秒パルス磁場発生装置,日本 磁気学会,2013.9.3~9.6,北海道大学(札 幌・北海道)

後藤龍太他, Nd-Fe-B 薄膜の作製と磁化 反転挙動の評価, 日本金属学会, 2013.3.27~2013.3.29,東京理科大学(東京) R.Goto et al. Magnetic properties of Nd-Fe-B thin films grown on high quality Mo (100) underlayer , The 12th MMM-INTERMAG Joint Conference, 2013.1.14~1.18, Chicago (USA)

〔図書〕(計0件)

〔産業財産権〕 出願状況(計0件)

名称: 発明者: 権利者: 種類: 番号: 出願年月日: 国内外の別:

取得状況(計0件)

〔その他〕 ホームページ等 http://www.tagen.tohoku.ac.jp/labo/kitakami/inde x.html

6.研究組織

(1)研究代表者
北上 修 (KITAKAMI, Osamu)
東北大学・多元物質科学研究所・教授
研究者番号: 70250834

(2)研究分担者
岡本 聡 (OKAMOTO, Satoshi)
東北大学・多元物質科学研究所・准教授
研究者番号:10292278

(3)研究分担者
菊池 伸明 (KIKUCHI, Nobuaki)
東北大学・多元物質科学研究所・助教
研究者番号: 80436170

(4)研究分担者
島津 武仁 (SHIMATSU, Takehito)
東北大学・学際科学国際高等研究センター・教授
研究者番号:50206182

(5)研究分担者 柳原 美廣 (YANAGIHARA, Mihiro) 東北大学・多元物質科学研究所・教授 研究者番号:40174552