科学研究費助成事業

研究成果報告書

平成 27 年 6 月 1 2 日現在

機関番号: 10101
研究種目: 基盤研究(C)
研究期間: 2012~2014
課題番号: 2 4 5 4 0 5 2 9
研究課題名(和文)半導体レーザー飽和吸収分光法によるプラズマ中の高感度電界計測技術の開発
研究課題名(英文)Development of high sensitivity electric field measurement method in plasmas by saturation spectroscopy using a diode laser
研究代表者
西山 修輔(Nishiyama, Shusuke)
北海道大学・工学(系)研究科(研究院)・助教
研究者番号:3 0 3 3 3 6 2 8
交付決定額(研究期間全体):(直接経費) 4,000,000円

研究成果の概要(和文):プラズマ中の電界を高感度に測定する方法として、シュタルク効果による励起スペクトルの 変化を検出する方法があるが、高出力の波長可変レーザーを必要とする。本研究では、取扱いが容易な波長可変半導体 レーザーを用いて高分解能のドップラーフリー分光法である飽和吸収分光法によるシュタルク分光計測を行った。水素 原子のバルマー 線に対して吸収スペクトルの測定感度を上げることでシースにおける電界によるシュタルク効果を直 接的に確認することができた。

研究成果の概要(英文): Conventional methods of high sensitivity electric field measurement in plasmas are Stark spectroscopy with a high power tunable laser. In this work, we applied saturation spectroscopy, which is high resolution Doppler-free spectroscopy, to Stark spectroscopy in plasmas with a tunable diode laser. Direct detection of Stark effect in sheath region is achieved for atomic hydrogen Balmer-alpha line with absorption sensitivity enhancement method.

研究分野:プラズマ計測

キーワード: プラズマ計測 シュタルク分光 飽和吸収分光 シース電界 電界計測

1.研究開始当初の背景

プラズマと固体表面の界面に形成される シース領域やそのシースへつながるプレシ ース領域における電界構造は、プラズマ物理 学の基礎的な課題として長年にわたり議論 されてきた。しかしながら、プラズマ中の電 界を高い精度かつ高い空間分解能で計測す る一般的な方法が無く、いまだに議論が重ね られている。高精度、高感度のプラズマ中電 界計測法としては、電界中の原子・分子のエ ネルギー準位がシュタルク効果により影響 を受けることを利用し、レーザー光をプロー ブとして用いるレーザー誘起蛍光法を応用 した計測法が開発されてきたが、大きなシュ タルク効果による電界への感度が高いリュ ドベルグ状態(高主量子数状態)への励起の ためには高出力の波長可変レーザーを必要 とし、装置のコストが高くメンテナンスやオ ペレーションも容易ではない。そのため、プ ラズマ中の電界計測の実測例は少数に留ま っている。

2.研究の目的

低主量子数の電子状態への励起は低出力 の半導体レーザーでも可能であるが、シュタ ルク効果が小さくなるため、ドップラー広が り以上のシュタルク効果が期待できるのは 非常に大きな電界に限られる。一方で、ドッ プラーフリー分光を適用できればドップラ ー広がりより2桁以上小さい均一広がり幅程 度のシュタルク効果が検出可能となるため、 高感度の電界計測となることが期待できる。 そこで、本研究ではドップラーフリー分光法 である飽和吸収分光法をプラズマ計測に適 用し、比較的安価で取扱いの容易な半導体レ ーザーを用いてプラズマ中の電界によるシ ュタルク効果を検出し電界計測へ応用する ことを目的とした。

3.研究の方法

下準位が準安定状態の光学遷移は吸収の 飽和が起こり易くプロセスプラズマの放電 ガスとしてアルゴンが一般的に用いられて いることから、アルゴン原子の 4s[3/2]º2-4p[3/2]2 遷移(763.511nm)と 4s[3/2]^o2-5p[3/2]2 遷移(415.859nm)においてシュタル ク効果の検出を試みた。アルゴン原子では内 核電子が多くシュタルク効果の理論計算が 難しいため、実験的に電界による飽和吸収ス ペクトルのピークのシフトや半値幅の変化 の有無を検討した。また、光学的に薄く吸収 自体の検出が難しいもののシュタルク効果 の理論計算が可能である水素原子のバルマ 線(656.282nm)については、吸収検出感 度を向上させる波長変調法も適用し、電界下 での微細構造スペクトルを理論計算によっ て求めたスペクトルと比較した。

本研究で用いた実験装置の概要を図 1-3 に 示す。いずれもプラズマ源として内部アンテ ナ型 ICP プラズマ発生装置を用い、直径

図 1: Ar I 4s-4p (763.511nm) における 飽和吸収分光法の実験体系

260mm の円筒チャンバー内にアルゴン、あ るいは水素プラズマを生成した。光学窓を通 して円筒の直径方向を横切る光路を設定し、 光路に接するように直径 150mm の電極円盤 を配置した。電極円盤と光路との距離は可変 であり、電極には直流電源が接続され電極表 面のシースにおける電界が光路上のプラズ マに印加されるようになっている。光学系は、 外部共振器型の波長可変半導体レーザー (ECDL)を光源として用い、レーザー光を高 強度のポンプ光と微弱なプローブ光に分割 してチャンバー内の光路上に互いに対向す る方向から入射した。プラズマ中を透過した プローブ光をビームサンプラーでフォトダ イオードへ導き透過光強度を記録した。プロ - ブ光およびポンプ光の強度は ND フィルタ ーで調整した。レーザーの発振波長は吸収ス ペクトルのドップラー広がりをカバーする 範囲で連続的に掃引し、ファブリ・ペロー共 振器を用いて波長偏移を記録した。

光学的な吸収が大きいアルゴン原子の 4s[3/2]^o2-4p[3/2]² 遷移(763.511nm)において は、プローブ光の入射強度 I₀と透過強度 I よ リ Lambert-Beer の法則に従って吸収係数α を光路長を l としてαl=-ln(I/I₀)により求め、 ポンプ光を入射した場合の吸収係数αs とポ

図 2: Ar I 4s-5p (415.859nm) における 飽和吸収分光法の実験体系

図 3: Ha (656.282nm) における飽和吸 収分光法の実験体系

ンプ光を入射しない場合の吸収係数aのより 飽和吸収分光法の理論に従って(ao-as)/aoを 飽和吸収スペクトルとして求めた。

光学的に薄いアルゴン原子の 4s[3/2]⁹²⁻5p[3/2]² 遷移(415.859nm)においては、単純 な吸収分光の体系では線幅を評価できるよ うな明瞭な飽和吸収スペクトルが得られな いため、図2に示すようにポンプ光をチョッ パで断続し、ロックインアンプでポンプ光に 同期する飽和吸収信号(Δα=α0-αs)を検出した。 この遷移は自然幅が 270kHz と小さいため、 基準キャビティを用いてレーザー波長の安 定化を行った。

さらに光学的に希薄な水素原子のバルマ - 線(656.282nm)においては、図3に示す ように微弱な吸収のピークを高感度に検出 できる波長変調レーザー吸収分光法と飽和 吸収分光法を組み合わせた光学系を用いた。 レーザー波長の直線的な掃引に、均一幅の数 倍程度の変調幅とした正弦波による波長変 調を重畳することで、飽和吸収ピークが存在 する波長において透過光強度に変調周波数 の2倍の周波数成分が現れ、ロックインアン プで高感度に検出可能となる。

4.研究成果

(1) アルゴンプラズマにおける飽和吸収ス ペクトルの検討

アルゴン原子の 4s[3/2]⁰2-4p[3/2]2 遷移

図 4: Ar I 4s-4p (763.511nm) における 飽和吸収スペクトル

図 5: Ar I 4s-4p (763.511nm) における 飽和吸収スペクトルの FWHM と飽和 広がりを除いた均一広がり幅 γのポン プ光強度に対する依存性

(763.511nm)において得られた飽和吸収スペ クトルΔα/α₀は、図 4 に示すように理論どお りにローレンツ型のスペクトルとなり、ピー クの高さと半値幅(FWHM)はポンプ光の強 度とともに増加した。吸収の飽和の程度を表 す飽和パラメーターS₀は S₀=(1- $\Delta\alpha/\alpha_0$)⁻²-1 で 求められ、飽和吸収スペクトルの FWHM は その遷移の均一広がり幅 γ に対して (1+(1+S₀)^{1/2})/2 倍に広がる。図 5 は実験的に 得られたスペクトルの FWHM と、飽和広が りを除いた γをポンプ光強度に対してプロ ットした図で、ポンプ光強度とともに FHWM が増加するのに対して γ はほぼ一定 (10MHz)と見積もられ、飽和パラメーターを 考慮することでシュタルク広がりが含まれ る均一広がり幅 γ を正確に評価できるこ とが分かった。この遷移の自然幅は 5.5MHz であるが、 より自然幅が狭い 4s[3/2]^o2-5p[3/2]² 遷移(自然幅=270kHz)にお いても得られた飽和吸収スペクトルの FWHM は 7MHz あって、この線幅は主に半 導体レーザーの短時間変動によると思われ る。図6に示すように、これら遷移では光路 から約 1mm 離れた電極に-300V の直流電圧 を加えた状態でもスペクトルの位置や幅に 変化は見られず、シュタルク効果による電界 計測に用いるためにはより安定化されたレ -ザーを用いる必要があると考えられる。

図 6: Ar I 4s-5p (415.859nm) における 飽和吸収スペクトル

(2)水素プラズマにおける飽和吸収スペクト ルの検討とシュタルク効果の確認

水素原子のバルマー 線では、微細構造に よる複数のスペクトルが近接して存在して いて、それぞれのシュタルク効果は量子力学 的な計算が可能である。0V/cmから160V/cm の外部電界におけるスペクトルの計算結果 は、図7のように100V/cm以下の電界でも 数 GHz オーダーの顕著なスペクトルの分裂 が生じ、飽和吸収分光法で観測可能と予想さ れた。

波長変調法を用いて得られた飽和吸収ス ペクトルは図 8 のようになって、光路から 1mm 離れた電極に直流電圧を印加していな い状態では Hα 線の主要な微細構造による ピークが見られているのに対して、印加電圧 が-20V を超えたあたりで 2S_{1/2}-3P_{1/2}、 2S1/2-3P3/2, 2P1/2-3D3/2 に対応するピークが 不明瞭になっている。その一方で 2P3/2-3D5/2 に対応するピークは変化していない。これは 理論計算と比較すると-40Vの電圧印加で 100V/cm 程度の電界によるシュタルク効果 と見積もられた。また、図 7. 図 8 は偏光方 向が外部電界と並行な場合であるが、偏光方 向を外部電界と直交させた場合には、理論計 算では 2P3/2-3D5/2 のピークも移動し、実験で も-40V の電圧印加でスペクトルのピークが ほぼ見えなくなるなどシュタルク効果の偏 光方向への依存性が確認できた。

本研究で用いた実験体系では、Hα 線の吸 収スペクトルを得るためにプラズマ密度を 高めたため、結果としてシースの厚さがレー ザー光の径程度になり、シース電界の空間構 造を定量的に把握するには至らなかったが、 半導体レーザーを用いたシステムでシース 電界のシュタルク効果が計測可能であるこ とが確認できた。今後はプラズマ源やレーザ ーシステムを洗練することでシース電界の 空間構造の評価につながるものと期待でき る。

5.主な発表論文等 (研究代表者、研究分担者及び連携研究者に

図 8: Hα (656.282nm) における飽和吸 収スペクトルの電極印加電圧による影 響

は下線)

〔雑誌論文〕(計2件)

 H. Nakano, <u>S. Nishiyama, M. Goto</u>, 他
名, Hydrogen Atom Temperature Measured with Wavelength-Modulated Laser Absorption Spectroscopy in Large Scale Filament Arc Negative Hydrogen Ion Source, AIP Conference Proceedings, 20018, 1665 (2015), DOI 10.1063/1.4916427, 查読 有

S. Nishiyama, M. Goto, H. Wang, K. 2 Sasaki, Application of Saturated Absorption Spectroscopy to Plasma Diagnostics, Journal of **Physics:** Conference Series, 12035, 548 (2014), DOI 10.1088/174206596/548/1/012035、 査読有

[学会発表](計20件)

 <u>西山修輔</u>,水素原子バルマー 線のシュ タルク分光によるプラズマ中の電界計測, 「プラズマ分光と素過程研究の深化と展開」 研究会,2015 年 1 月 30 日,核融合科学研究 所(岐阜県・土岐市)

 <u>西山修輔</u>, 波長変調レーザー吸収分光法 を用いた水素原子バルマー 線におけるシ ュタルク効果の観測, Plasma Conference 2014, 2014 年 11 月 20 日, 朱鷺メッセ(新潟 県・新潟市)

3 西山修輔,電界印加時におけるアルゴン4s[3/2]⁹2-5p[3/2]2 遷移の飽和吸収分光計測, 第 61 回応用物理学会春季学術講演会,2014 年 3 月 17 日,青山学院大学(神奈川県・相模 原市)

4 <u>S. Nishiyama</u>, Estimation of homogeneous linewidth of the argon $4s[3/2]^{\circ}-4p[3/2]_2$ transition by saturation spectroscopy, 66th Annual Gaseous Electronics Conference, 2013年10月2日, Princeton (USA) 5 <u>S. Nishiyama</u>, Development of saturation spectroscopy for plasma diagnostics, 16th International Symposium on Laser-Aided Plasma Diagnostics, 2013 年9月24日, Madison (USA)

6 <u>S. Nishiyama</u>, Saturation spectroscopy of argon 4s[3/2]-5p[3/2] transition spectrum, 第 60 回応用物理学会春季学術講 演会, 2013年3月28日, 神奈川工科大学(神 奈川県・厚木市)

7 <u>S. Nishiyama</u>, Homogeneous line width measurement of absorption spectrum of metastable argon by Saturation spectroscopy, 第 30 回プラズマ プロセシング研究会, 2013 年 1 月 22 日, ア クトシティ浜松 (静岡県・浜松市)

〔産業財産権〕 出願状況(計1件)

名称:シース電界計測方法、被膜形成方法、 シース電界計測装置、および被膜形成装置 発明者:滝澤一樹、佐々木浩一、西山修輔 権利者:同上 種類:特許 番号:特願 2014-221279 出願年月日:2014 年 10 月 30 日 国内外の別: 国内

6.研究組織

(1)研究代表者
西山 修輔(NISHIYAMA, Shusuke)
北海道大学・大学院工学研究院・助教
研究者番号: 30333628

(2)研究分担者
佐々木 浩一(SASAKI, Koichi)
北海道大学・大学院工学研究院・教授
研究者番号: 50235248

後藤 基志 (GOTO, Motoshi) 核融合科学研究所・ヘリカル研究部・准教 授

研究者番号: 00290916

(3)研究協力者

滝澤 一樹 (TAKIZAWA, Kazuki)中野 治久 (NAKANO, Haruhisa)