科学研究費助成事業

研究成果報告書

平成 26 年 5月 23日現在

機関番号: 17102
研究種目:挑戦的萌芽研究
研究期間: 2012 ~ 2013
課題番号: 24656173
研究課題名(和文)2次元リフレクタンス画像を用いたロボット用地図構築のための3次元形状識別
研究課題名(英文)3D object categorization using 2D reflectance image for robot map construction
研究代表者
倉爪 亮 (Kurazume, Ryo)
九州大学・システム情報科学研究科(研究院・教授
研究者番号:70272672
交付決定額(研究期間全体):(直接経費) 3,100,000 円、(間接経費) 930,000 円

研究成果の概要(和文):本研究では,3次元レーザスキャナ特有の副産物である2次元リフレクタンス画像に,2次元 画像に対する一般物体認識の手法を適用することで,3次元形状を高精度に識別する手法を開発した.本研究では, 車載レーザシステムの構築とリフレクタンス画像の有用性検証, リフレクタンス画像データベースおよびカテゴリ辞 書の構築, 小規模地図データのカテゴリ分類実験, 大規模市街地データのカテゴリ分類実験を行った.また,リフ レクタンス特徴からHOG特徴量を,距離画像からHONV特徴量をそれぞれ抽出し,それらを統合した新たな3次元特徴量(3D HOG)を開発し,屋外環境での認識実験により有効性を確認した.

研究成果の概要(英文): In this research, we developed an accurate object categorization technique using 2 D reflectance image and 3D shape information taken by a laser scanner. A laser scanner is widely used to c apture shapes of objects for many applications. From a laser scanner, we can obtain not only range data bu t also laser reflectance which shows the power of reflected laser as a side product of range measurement. The developed technique utilizes both information for object categorization simultaneously. To develop thi s system, we conducted 1) development of vehicle laser scanning system and verification of usefulness of I aser reflectance, 2) development of small-size database, 3) categorization experiment using small-size dat abase, and 4) development of city-size database and categorization experiment. In addition, we developed 3 D HOG by combining HOG extracted from reflectance information and HONV obtained from range information and verified the performance of 3D HOG by outdoor experiments.

研究分野:工学

科研費の分科・細目: 機械工学・知能機械学・機械システム

キーワード: 知能ロボティクス レーザ計測 環境認識 モデリング 知能機械

1.研究開始当初の背景

3次元形状に基づく物体識別は、データの 複雑性やセンサ特有のデータ欠損、計測ノイ ズなどにより、未だ決定的な手法が開発され ていない。一方、2次元画像から撮影対象を 識別する一般物体認識は、Bag of wards など の文書解析の手法を取り入れることで、近年 急速な進歩があった。本研究は、困難とされ ている3次元形状識別に対し、3次元レーザ スキャナ特有の副産物である2次元リフレク タンス画像に着目し、それに画像に対する物 体認識手法を適用することで、3次元情報を 直接用いずに3次元形状を識別するものであ る。特に本研究では、車載レーザスキャナに よる街並み形状の計測と記録に着目し、レー ザセンサから得られる膨大な点群を車両や 住宅など意味ごとに分類、保存し、生活支援 ロボット用3次元地図として活用する、従来 の発想にはない新たな手法を開発すること を目的とする。

近年、距離画像を高速かつ高精度に計測で きるレーザスキャナが相次いで開発、市販さ れている。レーザスキャナは、センサから発 射されたレーザ光が物体表面に反射して再 びセンサに戻るまでの時間を計測し、物体ま での距離を取得するもので、高精度な三次元 形状計測が可能である[1] [2] [3]。計測された 三次元形状は VR モデルの作成や構造物の 現況確認など多くの用途があるが、三次元形 状同士を比較することで、物体識別を行うこ とも可能である。Steder ら[1] は、距離画像 から法線情報に基づく特徴を抽出した NARF (Normal Aligned Radial Features) の特徴点の検出方法を提案し、特徴点検出の 安定性と NARF のマッチング性能について の実験を行っている。伊達ら[2] は、三次元 モデル上の法線方向周りの点の分布を表す Spin Image を用い、法線スムージングや点 密度一様化を行うことでノイズやデータ欠 損に対してロバストな認識を実現している。 また、Behley ら[3] は、三次元データから得 られるスペクトルヒストグラムを用いるこ とで、地面、車、草木などの識別実験を行っ ている。しかし、これらの特徴量は三次元デ ータに基づく物体形状の特徴を記述してい るため、例えば携帯電話とリモコンなど、類 似した形状の物体を正確に識別することは 困難である。この場合、物体の形状情報に加 え、カメラ等の他のセンサから得られる"見 え"の情報を付加した識別が有効となる[4]。 Mohottala ら[4] はレーザスキャナとカメ ラの2 つのセンサを用いた移動体識別シス テムを考案している。しかし、一般に各セン サから得られる情報は異なる視点からのも のであるため、センサ間でのキャリブレーシ ョンを行わなければならない。

-方で、レーザスキャナからは距離計測の 副産物としてレーザの反射光強度(リフレク) タンス値)を得ることができる[5]。リフレク タンス値は、単一周波数の点光源下における 物体の見えに関する情報を持っており、単一 のレーザスキャナから物体の距離情報と見 えの情報が取得できる。

2.研究の目的

本研究では、レーザスキャナから得られる 物体の形状と見えの特徴に基づく物体識別 手法を提案する。また、提案手法を道路交通 量調査へ適用し、提案手法の有効性を確認す る。さらに、さらに、HOG 特徴量[7] を拡張 し、物体の見えを3次元空間で表現できる" 3DHOG"を開発し、環境種別などの高次の空 間情報をアノテーションする"セマンティッ クラベリング"を実現する。

3.研究の方法

本目的を達成するため、 車載レーザシス テムの構築とリフレクタンス画像の有用性 検証、 リフレクタンス画像データベースお よびカテゴリ辞書の構築、 小規模地図デー タのカテゴリ分類実験、 大規模市街地デー タのカテゴリ分類実験の項目を設定した。

4.研究成果

車載レーザシステムの構築とリフレクタ ンス画像の有用性検証

電動車いすを改 造した移動台車に 2 つのレーザセン サを搭載した専用 測定装置を開発し、 走行しながら形状 およびリフレクタ ンスデータを取得 するシステムを開 発した。

またレーザスキャナを用いた交通量調査 システムに提案手法を適用し、レーザセンサ から得られる距離画像とリフレクタンス画 像を併用し、リフレクタンス画像から得られ る HOG 特徴量と距離画像から得られる形状デ ータを用いた対象物認識システムを構築し た。

リフレクタンス画像

	距離分散値+高さ					
	バス1	バス2	車	バイク	トラック	人
Detected	23	17	69	40	19	50
Correct	18	10	68	37	16	45
Precision	78.3%	58.8%	98.6%	92.5%	84.2%	90.0%
Recall	75.0%	76.9%	94.4%	86.0%	100.0%	90.0%

リフレクタンス画像を用いなかった場合

	距離分散値+高さ+HOG(7200次元)					
	バス1	バス2	車	バイク	トラック	人
Detected	24	13	72	43	16	50
Correct	22	11	72	43	16	50
Precision	91.7%	84.6%	100.0%	100.0%	100.0%	100.0%
Recall	91.7%	84.6%	100.0%	100.0%	100.0%	100.0%

リフレクタンス画像を用いた場合

実験の結果、リフレクタンス画像から得られる HOG 特徴量と距離画像から得られる形状 データを併用することで、類似した形状の物 体の識別精度が向上することを確認した。

リフレクタンス画像データベースおよび カテゴリ辞書の構築

距離画像とリフレクタンス画像を用いた 対象物認識システムを、レーザスキャナを用 いた3次元地図データのカテゴリ分類に適用 し、建物、自動車、人、樹木などのカテゴリ 辞書を作成した。

カテゴリ辞書の例

小規模地図データのカテゴリ分類実験 構築した屋外3次元地図データを用いて分 類実験を実施した。実験の結果、建物や車、 人、樹木などを距離画像とリフレクタンス画 像を併用して高精度で認識することに成功 した。

また、 で開発した手法を拡張し、リフレ クタンス特徴から HOG 特徴量を、距離画像か ら HONV 特徴量をそれぞれ抽出し、それらを 統合した新たな3次元特徴量(3D HOG)を開 発した。さらに取得した空間データに本手法 を適用し、木、車、人、建物、電柱の識別実 験を行い、識別率 98%の良好な結果を得た。

大規模市街地データのカテゴリ分類実験

車載レーザスキャナから計測した市街地の 大規模3次元データに対して、上記手法を適用 して電柱を検出する実験を行い、高速な抽出 とラベル付けが可能であることを確認した。

計測点群

セグメンテーション結果

分類結果

	HONV						
	Building	Car	Human	Tree	Pole	Total	
Images	103	104	124	131	28	490	
Detected	104	103	123	135	25		
Correct	94	97	115	124	23	453	
Precision	90.4%	94.2%	93.5%	91.9%	92.0%		
Recall	91.3%	93.3%	92.7%	94.7%	82.1%	92.4%	
	HONV and HOG (Proposed method 1)						
	Building	Car	Human	Tree	Pole	Total	
Images	103	104	124	131	28	490	
Detected	104	101	125	132	28		
Correct	98	98	121	127	26	470	
Precision	94.2%	97.0%	96.8%	96.2%	92.9%		
Recall	95.1%	94.2%	97.6%	96.9%	92.9%	95.9%	
	HONV and 3DHOG (Proposed method 2)						
	Building	Car	Human	Tree	Pole	Total	
Images	103	104	124	131	28	490	
Detected	102	104	129	127	28		
Correct	100	101	124	127	27	479	
Precision	98.0%	97.1%	96.1%	100%	96.4%		
Recall	97.1%	97.1%	100%	96.9%	96.4%	97.8%	
	3DHOG						
	Building	Car	Human	Tree	Pole	Total	
Images	103	104	124	131	28	490	
Detected	106	101	124	131	28		
Correct	103	99	123	128	27	480	
Precision	97.2%	98.0%	99.2%	97.7%	96.4%		
Recall	100%	95.2%	99.2%	97.7%	96.4%	98.0%	

認識実験の結果

参考文献

[1] B. Steder, R. B. Rusu, K. Konolige, and W. Burgard, "Point Feature Extraction on 3D Range Scans Taking into Account Object Boundaries". In IEEE International Conference on Robotics Automation, 2011.

[2] Hiroaki Date, Yusuke Kaneta, Akihiro Hatsukaiwa, Masahiko Onosato, and Satoshi Kanai, "Object Recognition in Terrestrial Laser Scan Data using Spin Images". CAD'11 conference and exhibition, 83, 2011.

[3] J. Behley, V. Steinhage, and A. B. Cremers, "Performance of Histogram Descriptors for the Classification of 3D Laser Range Data in Urban Environments". In IEEE International Conference on Robotics Automation, 2012.
[4] Shirmila Mohottala, Shintaro Ono, Masataka Kagesawa, and Kasushi

Ikeuchi, "Fusion of a Camera and a Laser Range Sensor for Vehicle Recognition". In Computer Vision and Pattern Recognition Workshops, 2009.

[5] Axel Murguet,岩下友美,倉爪亮,"距離 画像とリフレクタンス画像を用いた移動体 識別".第28回日本ロボット学会学術講演 会講演予稿集,3I3-3,2010.

[6] Navneet Dalal and Bill Triggs, "Histograms of oriented gradients for human detection". In Computer Vision and Pattern Recognition, Vol.1, 2005.

[7] N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection", in Computer Vision and Pattern Recognition, vol. Vol.1, 2005.

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

ShujiOishi, <u>RyoKurazume</u>, Yumi Iwashita, Tsutomu Hasegawa, Range Image Smoothing and Completion utilizing Laser Intensity, Advanced Robotics, 査読有, 27-12, 2013, 947-958

DOI:10.1080/01691864.2013.797141

〔学会発表〕(計8件)

近藤 直明,大石 修士,岩下 友美,<u>倉</u> <u>爪 亮</u>,レーザスキャナによる 3 次元形状と 見えに基づくセマンティックラベリング, 日本機械学会ロボティクスメカトロニクス 講演会,1P1-V05,2014.5.26,富山

ShujiOishi, <u>RyoKurazume</u>, Yumi Iwashita, Texture Restoration Using Laser Attributes, Proc. The Ninth Joint Workshop on Machine Perception and Robotics (MPR13), K-P-03, 2013.10.31-11.1, 京都

Naoaki Kondo, Shuji Oishi, Yumi Iwashita, <u>Ryo Kurazume</u>, Classification of Urban Area Using Laser Scanner, Proc. The Ninth Joint Workshop on Machine Perception and Robotics (MPR13), K-P-04 , 2013.10.31-11.1, 京都

Shuji Oishi, <u>Ryo Kurazume</u>, Yumi Iwashita, Tsutomu Hasegawa, Hole-free texture maping based on laser reflectivity, The International Conference on Image Processing (ICIP), September 15-18, 2013, Melbourne

近藤 直明,大石 修士,岩下 友美,<u>倉爪</u> <u>亮</u>,リフレクタンス画像を用いた街並みモ デルのセマンティックラベリング,第 31 回 日本ロボット学会学術講演会, 3G1-01, 2013.9.6,東京

大石 修士,<u>倉爪 亮</u>,岩下 友美,レーザ 反射率に基づく3次元幾何モデルのテクスチ ャ欠損修復,第 31 回日本ロボット学会学術 講演会,311-03,2013.9.6,東京

近藤 直明,大石 修士,岩下 友美,<u>倉爪</u> <u>亮</u>,長谷川 勉,レーザスキャナを用いた距 離と見えに基づく物体識別,日本機械学会 ロボティクスメカトロニクス講演会 2013, 1P1-J02,2013.5.22-25,筑波

Shuji Oishi, Naoaki Kondo, Yumi Iwashita, Ryo Kurazume, Object recognition by a laser scanner usina multimodal information. 11th International Quality Conference Control on bv Artificial Vision (QCAV), pp.186-189, 2013.5.30-6.1, 福岡, 査読有

〔図書〕(計0件)

〔産業財産権〕 出願状況(計0件) 取得状況(計0件)

〔その他〕 ホームページ等 http://robotics.ait.kyushu-u.ac.jp/~kur azume/research-j.php?content=cv#c08

6.研究組織
 (1)研究代表者
 倉爪 亮(KURAZUME, Ryo)
 九州大学・大学院システム情報科学研究
 院・教授
 研究者番号:70272672