永磁石を用いた電子線イオン・トラップを製作した。装置開発の目標として、超伝導磁石の利用に伴うコスト、設計の複雑さ、および検出器立体角の減少を避けるため永久磁石の利用、トラップ中心磁場1.0 T以上、銅光検出のため最大の立体角の確保、電子ビームのエネルギー1 keVの電子ビームのエネルギーを到達し、真空チャンバ、磁気ポールビース、磁気サーキット、それから電子束と電子光一式を製作した。現在使用可能な磁石16枚の内16枚の利用でトラップ中心磁場0.8 Tに到達した。1 keV、1 mAの電子束の利用が可能で、可視光分光を用いてアルゴンイオンの生成を確認できた。

研究分野：コヒーレント線利用研究

科研費の分科・細目：物理系科学・原子・分子・量子エレクトロニクス

キーワード：量子光学
Free-electron laser facilities are currently opening up new frontiers of research making use of unprecedented peak brightness, narrow pulse widths, and coherence properties at extreme ultraviolet (< 80 nm) and X-ray wavelengths. Techniques previously only available at microwave and visible wavelengths are expected to lead to new breakthroughs when extended to shorter wavelengths. At the SCSS free-electron laser facility at SPring-8, steps had been made in this direction, with the highlight being the observation of superfluorescence in helium (Phys. Rev. Lett. 107 (19) 193603 (2011). This required the high peak brightness and short pulse nature of the free-electron laser to achieve a high density of atoms in an excited state, which subsequently decay collectively and coherently. The observed emission was on a visible wavelength transition (502 nm). In order to observe similar effects at shorter wavelengths, it is necessary to find suitable level schemes, and rather than neutral atoms, medium to highly-charged ions offer exciting opportunities, albeit at lower densities.

In the early stages of this project experiments were continued at SCSS to further understand the superfluorescence decay schemes, and also to develop a gas-cell based monochromator (figure 1). Further details can be found in Harries et al. J. Phys. B 46(16) 164021 (2013), and JPS Conf. Proc. 1, 13083 (2014).

While the initial application envisaged the development of a linear quadrupole ion trap to be used at a beamline, it became apparent that the most suitable technology was an electron-beam ion trap (EBIT), which uses a tightly-focussed beam of electrons to create and trap highly-charged ions from a neutral target introduced at low densities. The EBIT offers more flexibility on the charge states which can be studied, and opens the door to many more fields of study.

The study of highly-charged ions (atoms which have lost most of their electrons) provides information useful in fields as diverse as understanding spectra from X-ray space telescopes [Bernitt et al., Nature 492 p225, 2012], precision metrology and tests of QED, and ion therapy. A further application of particular interest is providing data for modelling plasma processes, for example the effect of tungsten wall impurities in the ITER plasma. Since electronic transitions in highly-charged ions extend from the visible into the hard X-ray wavelength range, synchrotron radiation and X-ray free-electron lasers are ideal tools for their spectroscopy. However due to the difficulty of creating high densities of particular charge states, it is only recently that such studies have come into their own [Rudolph et al., Phys. Rev. Lett. 111, 103002, 2013].
4. Results

Figure 2 shows an overview of the compact EBIT. At the center is a stainless steel ICF70 cube with two ICF114 flanges. These connect to magnetic steel pole piece flanges, to which magnets are attached. Permendur steel pole pieces extend inside the cube to focus the magnetic field to the trap center. Jigs (not shown) were constructed to safely mount and remove the strong magnets, and a turbo-molecular pump (not shown) provides a high vacuum. More details are provided below.

Magnetic circuit. The magnetic field was designed by performing simulations using the free 2-dimensional finite-element modelling software FEMM, using magnetic meshes rotated through 360° to approximate the magnets, caps, and rods. Figure 3 shows the simulated field strength, as compared to measurements made with a Hall-effect probe. Field strength can be adjusted by changing the number of the 10-mm-thick magnets used. Figure 2 shows 2 sets of 4 layers of magnets on each of 4 arms of the trap. The magnets can be removed without breaking vacuum, allowing online coarse adjustment of field strength, and also baking of the vacuum system (the grade N35 magnets have a maximum temperature of 80°C).

A stack of 4 magnets will provide field strengths greater than 1.0 T.

Electron optics. At the heart of the EBIT is an electron gun and collector system, which provides a high-current electron beam which is compressed by the magnetic field and is used to create and trap ions. To maximize the field strength in the trap region, the inner dimensions of the pole pieces are tight, making electron optics design critical. For the new EBIT a commercially produced Ta cathode assembly is mounted in custom-designed electron optics. The collector assembly sinks the current passed through the trap. Preliminary tests have shown successful operation at electron energies up to 3 keV, and currents of greater than 1 mA have been observed on the collector. Work will progress to reach the limit of the current cathode, which is around 2 mA. The design allows for the future upgrade to a LaB₆ emitter, which could provide currents of tens of mA.

Figure 3 Measured and calculated magnetic field strength in the central trap region. The field is largest within the 22-mm gap between the two pole pieces, and is effectively shielded by the pole pieces in the region 20 mm < |z| < 100 mm. The discrepancy between calculated and measured field is mostly due to the finite size of the Hall probe. The lower graph shows the field within the trap.
Preliminary results.

A fibre-optic visible wavelength spectrometer was used to verify the creation of ions. Figure 4 shows a spectrum recorded upon leaking argon gas into the trap, using an electron beam of energy around 800 eV and current around 1 mA. Most of the lines can be identified as being due to transitions in Ar^+, Ar^{2+}, and Ar^{3+}, however evidence has also been obtained for the creation of Ar^{9+}, demonstrating that ions are being trapped and successively ionized. Imminent improvements to the electron beam, field strength, and vacuum are expected to lead to more efficient creation and trapping of highly-charged ions.

Figure 4 Spectrum showing visible-wavelength transitions in argon ions generated in the EBIT using an electron beam of energy 800 eV and current \sim 1 mA.

6. 研究組織

研究代表者

J. R. Harries (ハリーズ・ジェームズ)

独立行政法人日本原子力研究開発機構
原子力科学研究部門
量子ビーム応用研究センター

研究副幹

研究者番号：012000