科学研究費助成事業

研究成果報告書

科研費

機関番号: 1 8 0 0 1
研究種目: 若手研究(B)
研究期間: 2012 ~ 2014
課題番号: 2 4 7 6 0 3 2 0
研究課題名(和文)スーパーコンティニューム光を用いた「高分解能生体光イメージング顕微鏡」の開発
研究課題名(英文)Development of bio-optical imaging microscope using supercontinuum (SC) light source
研究代表者
室城 加津也(Mivagi Kazuva)
琉球大学・工学部・助教
研究者番号:5 0 5 1 2 6 8 8
交付決定額(研究期間全体):(直接経費) 3,500,000円

研究成果の概要(和文):近年、医工連携の促進に伴い工学分野の医療診断技術への進出による研究活動が盛んに行われている.その中でも広帯域光源の安定駆動に伴う「光」を用いた低侵襲-医療診断技術による研究分野の拡充が注目 されている.そこで本研究では、フォトニック結晶ファイバと超短光パルス光源を併用することで得られる超広帯域光 源(スーパーコンティニューム[SC]光源)を生体光イメージング顕微鏡への応用及び、その可能性について検討を行った .その際、被測定対象として「蛍光染色されたヒト乳がん細胞」を用い、更にSC光源と蛍光顕微鏡を組合わせたシステ ム構築を行った.最後に既存の蛍光顕微鏡との比較検証を行い、その性能評価を行った.

研究成果の概要(英文):Bio-imaging (i.e. observation of cells, biological tissue) tools has become essential in life science research by advancing medical and engineering cooperation by technological innovation. Low-invasive medical technique by using establishment of stabilizing operation of broadband light source has attracted much attention from recent years. In this research, we verify the possibility of fluorescence microscope using Supercontinuum (SC) light source, thereby we can indicate effectiveness of fluorescence microscope using SC light source by comparing suggested method (i.e. SC light-fluorescence microscope) and two types (using halogen lamp and metal halide lamp) conventional fluorescence of living cells.

研究分野:光計測工学

キーワード: 波長分散 非線形光学効果 自己位相変調法 スーパーコンティニューム光 フォトニック結晶ファイ バ 生体顕微鏡

1. 研究開始当初の背景

 近年の医工連携の促進に伴い、医療診断 技術の研究開発が盛んに行われている。その なかでも低侵襲医療技術の拡充へ向け, 様々 な医療形態の提案がなされており、その項目 の一つに、低侵襲-(光)医療診断技術への研究 が盛んに行われている.これは人体への影響 が小さい「光:可視・近赤外帯域」を人体-各部位に合わせた任意の波長を照射するこ とで、その生体散乱光を受光・解析すること で生体組織の3次元画像取得などを可能に し、更なる正確な医療診断への応用が実現で きる. そのため従来のような人体への負荷が 大きな設備(x 線など)を必要としない特徴を 有しており、低侵襲・低コスト・高分解能化 が期待できる.また、これらの光生体イメー ジング研究開発の歴史においては,現在の光 通信(近赤外)帯域で使用している光デバイス の発展と密接にリンクしており、これらの(通 信用)光デバイスを光・医療診断技術へそのま ま流用することで, 高い親和性によるシステ ム構築と更なる高性能化が可能である.

近年より、次世代光ファイバとして提言されている高非線形フォトニック結晶ファイバ(PCF)に関して、その高い製造再現性の確立と、それに起因する様々な複雑な構造特性を有する PCF の製造実現が可能となっている.また、更に、PCF 開発と同調して、モード同期・超短光(fs)パルスレーザの安定駆動と高光強度化の確立に伴い、これら(PCF と fs パルス光源)を組み合わせることで得られる超広帯域(SC:Supercontinuume: 400nm~2200nm)光源の安定発振の実現が可能になってきた.これらを用いた新たな医療診断機器・生体イメージングなどの高分解能・高速画像診断に向けた更なる応用研究が可能になっている.

(2)本研究グループでは、図 1[(a)~(f):全6種 類]に示した様々な構造特性を有する各種 PCF において、実測と数値解析を併用するこ とで,各種・光伝送特性の評価を行った.具体 的な PCF の伝送特性評価項目として(モード フィールド径:MFD, 実効断面積: A_{eff} , k-factor(=A_{eff}/(MFD/2)²), 波長分散:Dや, 非線 形光学効果: n₂/A_{eff} [n₂:非線形屈折率])などに 関して,その相関性(構造と光伝送)を総合的 に評価することにより効率的な SC 光発生に 関する検討を行う.更に SC 光源を用いた生 体光イメージング顕微鏡の評価を行うため, 光学軸と光学系(光フィルタなど)を任意設計 することで同軸落射型-蛍光顕微鏡を本研究 では新たに構築を行った. その蛍光顕微鏡と SC 光源を任意に組み合わせることで,SC 光 源を用いた生体光イメージング顕微鏡への 可能性についての検討を行った.

(3)ここで図 2 に,通常の光ファイバ(左)と PCF(右)の構造の違いを示し,その特性につ いて説明する.通常の通信用光ファイバ(図 2 左)では,コア領域(~10um)の屈折率分布を 任意(構造分散)設計することで,光伝送特性 を人為的に変化させることができるが,その コア領域は非常に狭いため大きな制限を受 ける.しかし PCF では,コア・クラッド領 域における構造分散設計の許容範囲が非常 に広いため,伝送特性の設計についても大き な柔軟性がある.そのため大小任意の MFD, Aeff, D,(材料変化による n2 変化)や n2/Aeff 特 性に関しても幅広い許容範囲と設計が可能 である.

 (d)PCF4
 (e)PCF5
 (f)PCF6

 図1本研究で使用した各種フォトニック
 結晶ファイバの電子顕微鏡写真(SEM)

図2 (左)通常の光ファイバ・ (右)フォトニック結晶ファイバの電子顕微鏡写真 (SEM)

2. 研究の目的

本研究において,低侵襲-(光)医療診断技術や, 生体光イメージングの高分解能化システム の実現には,超広帯域(SC)光源をシステムを 組込む必要がある.これより被測定対象の励 起光を任意に設定することが可能になる.本 研究では,下記の(1)と(2)を主な目的とした.

(1)高効率 SC 光発生に関して,任意の PCF の構造特性と光伝送特性の相関性についての検証を行った.また SC 光発生に伴う PCF 構造条件に関する検討を目的とした.

①ここでは主に、高効率 SC 光発生に不可欠 な PCF の伝送特性に関しての評価を実測と 数値解析(有限要素法:FEM)を併せて行った. これより任意の波長帯域における広帯域化 光源・光強度と PCF の構造特性の把握を目 的とした.そこで SC 光の高効率発生におい て、各種 PCF の構造特性と各光伝送特性評 価を行うことで、これらの相関性を示した. 特に PCF の非線形光学特性の評価は非常に 重要な要素であるため、構造(クラッド領域の 空孔[d],空孔間隔[A])が大きく異なる各種 PCF を被測定対象とし、PCF の非線形性を 示すパラメータ(A_{eff} , $n_2 \ge n_2/A_{eff}$)に関する評 価を行った. ②各種 PCF の評価技術として、これまで本 研究グループが通信用光ファイバの伝送特 性評価において培った技術を PCF の伝送評 価へ応用することで、様々な構造特性を有す る PCF の伝送特性評価を行うことが可能で ある.

(2) SC 光源を組込んだ同軸落射型・蛍光顕微 鏡を新たに構築し,被測定対象(細胞)の輝 度・分解能に関する検証を目的とした.(ここ では,被測定対象としてヒト乳がん細胞に, 蛍光試薬-染色処理を用いた.)また本研究で 構築を行った同軸落射型・蛍光顕微鏡の全体 図を図 3 (a) [イメージ図] 及び,図 3(b) [実物] を示した.

①被測定対象の観測結果(輝度・分解能)に関 しては,他に蛍光顕微鏡として広く用いられ ている光源(ハロゲンランプ・メタルハライド ランプ)との比較検証を行った.

②図 3(a)と(b)に関して,光学フィルタを多用 するため,無限遠補正対物レンズと結像レン ズを組合せた構造とした.イメージング(デジ タル)カメラ(可視・近赤外)は,使用する光学 フィルタに対し任意に変更した.また被測定 対象の移動(焦点調整・観測位置調整)のため, 電動 xyz 軸アクチュエータを用いた

③取得画像は,科学研究目的に広く用いられ ている画像解析ソフトウェア(ImageJ)で,(光 源特性の異なる蛍光顕微鏡から取得済み画 像において)画像解析を行った.

図3(a) 蛍光顕微鏡イメージ

図3(b) 独自構築-蛍光顕微鏡 3.研究の方法 (1)本研究では,図1(a)~(f)などに示した構造

の異なる数種類の PCF において,その構造 (空孔[d],空孔間隔[Λ]と添加材料-濃度)特性 把握を行うために、電子顕微鏡(SEM)と EDS(Energy Dispersive Spectroscopy)を用いた.

(2) 上記(1)の電子顕微鏡解析結果を基に,有限要素法を用いて,図1 PCF(a)-(f)を解析モデルとして(*d*, Λを任意に変化させた)任意形状における電磁界分布(MFD, A_{eff}), D 及びL_cなどの数値解析を行った.更に,実際のPCF 伝送特性の実測評価を行うことで,数値解析 結果の双方向確認に関する検討を行った.

(3)本実験で用いた実測評価システムでは、 本研究グループが、これまで培ってきた評価 技術を基に、独自開発したシステムを用いた. それを図4(a)と(b)に示す.具体的な手法を下 記の①~②に示した.

①図 4(a)に PCF の非線形光学効果(n₂/A_{eff} や n₂)評価システムを示す.本測定法は,変調信号光-自己位相変調(SM-SPM)法を用いた.ここでは,連続発振(CW)光を高周波(10GHz)で変調した信号光源を基本波とし,自己位相変調(SPM)法を解析アルゴリズムとして(n₂/A_{eff})測定を行った.

②任意 (C-L 帯域) 波長を被測定ファイバ(こ こでは PCF) に入射させ、その出射光におけ るファーフィールドパターン(FFP)測定をし、 FFP から PetermanII 定義式を用いて MFD 導 出と A_{eff} 導出及び、k-factor の測定を行った. ここで k-factor 値について述べる. 被測定フ ァイバの値が k \cong 1.0 の時、その屈折率分布は、 SI(Step-Index)型且つ、電磁界分布はガウシア ン分布と定義されており、その値から被測定 ファイバの構造・非線形性などを推測できる. 以上より、各種 PCF の構造と伝送特性の相関 性について検証を行った.

(4) 本研究において, SC 光源の優位性検証 を行うため,同軸投射型-蛍光顕微鏡システ ムを新たに構築し,それに SC 光源(図 3(a)) を組込み,被測定対象の観測を行った.その 際,本 SC 光源-蛍光顕微鏡の性能評価を行う ため,既存の蛍光顕微鏡システムとの比較検 証(画像解析)を行った.

図4(b) ファーフィールドスキャン(FFS)

4. 研究成果

(1)本研究では,図1(a)~(f)の構造の異なる(6 種類のPCF)に関して,その幾つかの光伝送特 性を実測と数値解析により明らかにした.こ れよりSC光源発生に重要な非線形光学特性 とPCF構造特性に関して検討を行った.

①SM-SPM 法及び,FFS 法を用いて,純石英 コア光ファイバ及び,純石英フォトニック結 晶ファイバの n_2/A_{eff} を測定した.その結果, 純石英コア材料の光ファイバでは, $n_2 \cong 2.10 \times 10^{-20} [m^2 W^{-1}]$ を得ることができた.また図1に 示した PCF の A_{eff} を FFS 法(図 4(b))を用いて 測定した(実測)結果と,その n_2/A_{eff} と k-factor の結果を表1に示した.ここで数値計算より 得られた A_{eff} と k-factor 測定結果も同表に示 した.

②表1より、図1(e)PCF5[d/A \cong 0.907]が、実測 値で、 $n_2/A_{eff}\cong$ 33.8×10⁻¹⁰[W⁻¹], k-factor \cong 1.41, また FEM 法より得られた値は、 $n_2/A_{eff}\cong$ 39.5 ×10⁻¹⁰[W⁻¹], k-factor \cong 1.12 と近い値を得るこ とができた.これより高非線形 PCFでは、非 ガウシアン分布・PCF5[d/A \cong 0.907]が分かっ た.ここで比較対象として、通常の光通信用 ファイバである DSF では、 $n_2/A_{eff}\cong$ 4.5× 10⁻¹⁰[W⁻¹]程である.そのため本研究で明らか となった(e)PCF5は、DSFの約7~9倍程の非 線形光学効果を有していることが分かった.

XI THEICI WITHINK					
	構造	実測値		数值解析	
PCF	d/Λ	n_2/A_{eff}	k	n_2/A_{eff}	k
name	[-]	$\times 10^{-10}$	[-]	$\times 10^{-10}$	[-]
		$[W^{-1}]$		$[W^{-1}]$	
PCF1	0.494	15.1	1.04	22.2	1.18
PCF2	0.517	17.5	1.04	18.4	1.14
PCF3	0.563	28.4	1.25	21.0	1.15
PCF4	0.892	30.5	1.33	25.8	1.15
PCF5	0.907	33.8	1.41	39.5	1.12
PCF6	0.946	32.4	1.43	-	-

表1 各種 PCF の解析結果

[表1内の[-]は計算不可]

(2)高非線形 PCF と超短光パルス光源より, SC 光発生過程で得られた超広帯域光源 (400nm~2200nm)を用いた.その SC 光源を本 研究において新たに構築を行った同軸投射 型-蛍光顕微鏡システムに組込むことで,被 測定対象「蛍光試薬で処理されたヒト乳がん 細胞」の生体イメージングの検討を行い,従 来システム(ハロゲンランプ・メタルハライ ドランプ)との性能の比較検証を行った.

(3)比較検討の際に、本研究で試作を行った蛍 光顕微鏡の光学系(カメラ・レンズなど)にお いて、比較対象(顕微鏡1と2)と許容の範囲 内で,各部品仕様を考慮した選定を行った. しかし,本研究以外の顕微鏡では各メーカ既 製品であるため,観測物の分解能を左右する 項目(低ノイズカメラ・画素数や,対物レン ズの開口数)に性能差が異なる.そのため本 研究では,蛍光画像の輝度に注目した.そこ で表2に,各3種類の蛍光顕微鏡の構成を示 した.また表3に,各顕微鏡より得られた画 像解析を,科学研究(生体イメージング)にお いて一般的に用いられているソフトウェア (ImageJ)を用いて輝度解析を行い,その結果 を示した.図5(a)~(c)に各顕微鏡より得られ たヒト乳ガン細胞画像の状態を示した.

表3より、本研究におけるSC光源を用いた蛍光顕微鏡の輝度が大きいことが確認できた.これは光源の特性よりSC光源は広帯域-高指向性、高コヒーレント光の特性を有しているため、高い効率で細胞励起を行うことができることが要因であると考えられる.また図5(a)[SC光源-蛍光顕微鏡]では、低開口数-対物レンズ使用に関わらず、バックグランド(背景)を暗くすることに成功し、細胞内(蛍光試薬)の強い(励起)発光を確認できた.しかし細胞輪郭の観測においては、不鮮明さの問題を確認できた.

表2 各蛍光顕微鏡で使用している光学系

1 4					
		本研究 −顕微鏡	顕微鏡1	顕微鏡2	
	撮像素子 サイズ	1/2 インチ	2/3 インチ	2/3 インチ	
カメラ	画素数	2048×1536	4080×3060	4076×3116	
	色彩	カラー	モノクロ	カラー	
	冷却機構	なし	ペルチェ冷却	空冷	
	光源	SC 光源	メタルハライド	ハロゲン	
光源	の種類	[レーザ]	[ランプ]	[ランプ]	
	波長帯域 [nm]	400-2200	350-800	330-870	
	出力 [W]	0.11	80	30.0	
対物	開口数 (N.A)	0.40	0.75	0.95	
レンズ	·ズ 倍率 20		20	40	
	焦点距離 [mm]	1.2	1.0	0.25	

表	3 :	観測	U	た細	胞	の쁐	軍度	:
~	~		~			~ /*		

<i>ب</i> د:			~
	本研究 −顕微鏡	顕微鏡1	顕微鏡2
細胞1	113	88	134
細胞 2	123	88	56
細胞3	96	87	87
細胞 4	122	88	102
細胞 5	-	79	-
平均	113	86	95

[表3内の[-]は計算不可]

(a) 本研究-蛍光顕微鏡(SC光源) [20倍]画像

(b) 顕微鏡 1(メタルハライドランプ) [20倍]画像

(c) 顕微鏡 2(ハロゲンランプ) [40 倍]画像
 図 5 各種蛍光顕微鏡によるヒト乳がん細胞の画像

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 1件)

① <u>Kazuya Miyagi</u>, Yoshinori Namihira, Yuho Kasamatsu, and Md.Anwar Hossain, Dynamic Control of Mode Field Diameter and Effective Area by Germanium Doping of Hexagonal Photonic Crystal Fibers, Optical Review, Vol.20, No.4, 2013,pp327-331. (査読あり) 〔学会発表〕(計 5件)

- 西川 諒,安里 真太郎,二宮 諒, <u>宮城 加</u> <u>津也</u>, "六角形 Ge 添加コアフォトニック 結晶ファイバを用いた波長分散制御及び 分散マネジメントへの検討", OKI-2014-23,電気学会九州支部沖縄支 所講演会,2014年11月29日,琉球大学, 沖縄県,西原町.
- 安里 真太郎,二宮 諒,西川 諒, <u>宮城 加</u> <u>津也</u>, "FFS 法を用いた各種フォトニック 結晶ファイバの k-factor に関する検討", OKI-2014-24, 電気学会九州支部沖縄支 所講演会,2014年11月29日,琉球大学, 沖縄県,西原町.
- ③ <u>宮城 加津也</u>,西川 諒,安里 真太郎,二 宮 諒,"フォトニック結晶ファイバの材料-構造特性と非線形屈折率(n2)における 相関特性の検討",OKI-2014-25,電気学会 九州支部沖縄支所講演会,2014年11月 29日,琉球大学,沖縄県,西原町.
- ④ 二宮 諒,安里 真太郎,西川 諒, <u>宮城 加</u> <u>津也,</u> "スーパーコンティニューム光源に よる蛍光顕微鏡を用いた乳がん細胞の画 像イメージングへの検討",OKI-2014-26, 電気学会九州支部沖縄支所講演会,2014 年 11 月 29 日,琉球大学,沖縄県,西原町.
- ⑤ <u>Kazuya Miyagi</u>, Yoshinori Namihira, Khoyu Nohara, and Ryo Nishikawa, "Dynamic Control of Effective Area and nonlinearity by changing Ge-doped rate for photonic crystal fibers", IEEE-ATC13, 16-18 October, 2013, in Ho Chi Minh City, Vietnam. (査読あり)

6. 研究組織

(1)研究代表者
 宮城 加津也(Miyagi, Kazuya)
 琉球大学 工学部電気電子工学科・助教
 研究者番号:50512688