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i _ Our goal in this work was to provide a principled approach to carry out
kernel/metric learning in an unsupervised way, to take advantage of large datasets of unlabeled data. We

investigated this research avenue by focusing mostly on histogram data (bags-of-features). Usin% a
combination of 3 known approaches by Aitchison, Lebanon and Hinton, we were able to propose different

algorithms which perform at state-of-the art level or directly outperform competing approaches.



Data analysts are now confronted to gigantic
datasets. These datasets contain for the most part
unlabeled data, such as transactional data, text or
images that can be harvested at a very little cost
on the internet but do not specify labels.

Many machine learning tasks, such as
classification or regression, are inherently
supervised, meaning that they need labeled data
to work. A recent trend of dataanalysis
algorithms collectively known under the name of
semi-supervised algorithms, among which deep
networks, have proposed to leverage these vast
resources of knowledge to improve the
performance of classifiers. In this context, the
motivation of this research wasto use these vast
databases to improve the performance of
inference algorithms by learning a novel
geometry for data, using the framework of kernel
methods/ metric learning.

Our project proposed to study algorithms that
could exploit unlabeled data to construct metrics
and kernel functions (similarity functions) that
can be efficiently applied in machine learning,
using for instance nearest-neighbor methods or
kernel support vector machines.

After afew experimentations, we felt that we
would be able to make the most salient
contributions in the field of metric learning for
histograms. The rationale for this choice was as
follows: most supervised and unsupervised
approachesto learn ametric for arbitrary data
have been confined to standard vectors, despite
the fact that a large share of these datasets
contain in fact histograms or bags-of-features.

Our contributions have relied on different tools,
among which (1) the body of work by Aitchison
[&] to define Riemannian metrics on the space of
discrete probability measures (2) a geometric
formulation by Lebanon [b] which inspired the
definition of acriterion to learn ametricin an
unsupervised way (3) recent advancesin the field
of maximum likelihood methods (contrastive
divergences[c], pseudo-contrastive divergences)
that can exploit samples randomly generated
from the candidate model p g to maximize
approximately the log-likelihood of the data
given acertain probabilistic model.

We have proposed three contributions which all
have in common a set of mappings proposed by
Aitchison [a] to define Riemannian metrics on
the space of discrete probability measures.

The first two contributions were published in the
ACML conference, with an extended version
published in the Machine Learning Journa. The
third publication has recently appeared in the
International Conference on Machine Learning.

L ear ning Aitchison Mappings

We proposed in these two papers to address the
prablem of learning a metric in the probability
simplex (ametric for histograms) by generalizing
afamily of embeddings proposed by Aitchison
(1982) to map the probability simplex onto a
suitable Euclidean space. The family of maps that
we considered was of the following form:

a(x) fp log (x + b) € R™.

In that formula, X is a probability vector
(nonnegative components that sum to 1), whereas
P (amap) and b (avector) are parameters of the
embedding.

We provided in these papers various gradient
descent type algorithms to estimate the
parameters of such maps. We showed that these
algorithms led to representations that
outperformed alternative approaches to compare
histograms, as can be seen in the results
displayed below for two datasets (MIT and
UIUC) of scene classification.
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In that work, our focus was still on learning
metrics using supervised knowledge. The
methods proposed in that paper inspired us to
pursue additional work, focused this time on
learning metrics in an unsupervised setting. This
contribution exploits further Aitchison’s [a]
geometry and is also inspired by deep learning
optimization methods [c].



Unsupervised Riemannian Metric Learning

We considered in this latest paper the problem of
learning a Riemannian metric on the simplex
using unlabeled histogram data. We followed the
approach of Lebanon [b], who proposed to
estimate such a metric, within a parametric
family of metrics, by maximizing the inverse
volume of the Riemannian metric computed at
each data point in the training set. The intuition
behind this reasoning is that distances should
move more slowly as they go through areas in the
probability simplex in which sampled points are
very dense, in order to be the most informative.

The metrics we consider on the simplex are
pull-back metrics of the Fisher information
parameterized by operations within the simplex,
inspired again by Aitchison’s (1982)
transformations. Our algorithmic approach to
maximize inverse volumes used sampling and
contrastive divergences.

To be more precise, we learned parameters o, A
to learn a map of the following form

xTEN;
ntl o,
2 X; Y

i=1

F(x)=HoG(x) = est.

1<i<n+1

This map associates to a histogram x another
histogram F(x) whose weights have been
rescaled geometrically and multiplicatively.

Experimental evidence shows that the metric
obtained under our proposal outperforms
alternative approaches, as can be seen in the
figure below, where we used a F measure to
compare several metrics, including ours, to
measure clustering performance. Our method,
plotted in the rightmost column, displays the best
performance on these two datasets.
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Additional results in the paper illustrate the
favorable empirical behavior of our method
compared to all other baselines, even when such
baselines make actual use of labels, as can be
seen in the classification results provided in the
figure below.

To summarize, we were able to propose an
unsupervised metric learning approach that was
able to perform at the same level as comparable
supervised metric learning approachs.

We expect in future research to continue on this
trend, and test these approaches on larger datasets,
to test some of our hypothesis in a very large
scale setting.
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