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研究成果の概要（和文）：この研究に置ける目標は、ラベルなしデータの大規模なデータセットを活用するために、教
師なしの方法でカーネル/距離学習を行うことが原則的アプローチを提供することでした。私たちは、ヒストグラムデ
ータに主に焦点を当てて、この研究の道を調査しました。 Aitchison、LebanonとHintonによって3既知のアプローチの
組み合わせを使用して、我々は最先端のレベルで実行するか、または直接競合するアプローチをアウトパフォーム異な
るアルゴリズムを提案することができました。

研究成果の概要（英文）：Our goal in this work was to provide a principled approach to carry out 
kernel/metric learning in an unsupervised way, to take advantage of large datasets of unlabeled data. We 
investigated this research avenue by focusing mostly on histogram data (bags-of-features). Using a 
combination of 3 known approaches by Aitchison, Lebanon and Hinton, we were able to propose different 
algorithms which perform at state-of-the art level or directly outperform competing approaches.
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１．研究開始当初の背景 
 
Data analysts are now confronted to gigantic 
datasets. These datasets contain for the most part 
unlabeled data, such as transactional data, text or 
images that can be harvested at a very little cost 
on the internet but do not specify labels.  
 
Many machine learning tasks, such as 
classification or regression, are inherently 
supervised, meaning that they need labeled data 
to work. A recent trend of data analysis 
algorithms collectively known under the name of 
semi-supervised algorithms, among which deep 
networks, have proposed to leverage these vast 
resources of knowledge to improve the 
performance of classifiers. In this context, the 
motivation of this research was to use these vast 
databases to improve the performance of 
inference algorithms by learning a novel 
geometry for data, using the framework of kernel 
methods / metric learning. 
 
２．研究の目的 
 
Our project proposed to study algorithms that 
could exploit unlabeled data to construct metrics 
and kernel functions (similarity functions) that 
can be efficiently applied in machine learning, 
using for instance nearest-neighbor methods or 
kernel support vector machines.  
 
After a few experimentations, we felt that we 
would be able to make the most salient 
contributions in the field of metric learning for 
histograms. The rationale for this choice was as 
follows: most supervised and unsupervised 
approaches to learn a metric for arbitrary data 
have been confined to standard vectors, despite 
the fact that a large share of these datasets 
contain in fact histograms or bags-of-features. 
 
 
３．研究の方法 
 
Our contributions have relied on different tools, 
among which (1) the body of work by Aitchison 
[a] to define Riemannian metrics on the space of 
discrete probability measures (2) a geometric 
formulation by Lebanon [b] which inspired the 
definition of a criterion to learn a metric in an 
unsupervised way (3) recent advances in the field 
of maximum likelihood methods (contrastive 
divergences [c], pseudo-contrastive divergences) 
that can exploit samples randomly generated 
from the candidate model p to maximize 
approximately the log-likelihood of the data 
given a certain probabilistic model. 
 
 

４．研究成果 
 
We have proposed three contributions which all 
have in common a set of mappings proposed by 
Aitchison [a] to define Riemannian metrics on 
the space of discrete probability measures.  
 
The first two contributions were published in the 
ACML conference, with an extended version 
published in the Machine Learning Journal. The 
third publication has recently appeared in the 
International Conference on Machine Learning. 
 
Learning Aitchison Mappings 
 
We proposed in these two papers to address the 
problem of learning a metric in the probability 
simplex (a metric for histograms) by generalizing 
a family of embeddings proposed by Aitchison 
(1982) to map the probability simplex onto a 
suitable Euclidean space. The family of maps that 
we considered was of the following form: 

 
In that formula, x is a probability vector 
(nonnegative components that sum to 1), whereas 
P (a map) and b (a vector) are parameters of the 
embedding. 
 
We provided in these papers various gradient 
descent type algorithms to estimate the 
parameters of such maps. We showed that these 
algorithms led to representations that 
outperformed alternative approaches to compare 
histograms, as can be seen in the results 
displayed below for two datasets (MIT and 
UIUC ) of scene classification. 
 
 

 
In that work, our focus was still on learning 
metrics using supervised knowledge. The 
methods proposed in that paper inspired us to 
pursue additional work, focused this time on 
learning metrics in an unsupervised setting. This 
contribution exploits further Aitchison’s [a] 
geometry and is also inspired by deep learning 
optimization methods [c]. 



 
Unsupervised Riemannian Metric Learning 
 
We considered in this latest paper the problem of 
learning a Riemannian metric on the simplex 
using unlabeled histogram data. We followed the 
approach of Lebanon [b], who proposed to 
estimate such a metric, within a parametric 
family of metrics, by maximizing the inverse 
volume of the Riemannian metric computed at 
each data point in the training set. The intuition 
behind this reasoning is that distances should 
move more slowly as they go through areas in the 
probability simplex in which sampled points are 
very dense, in order to be the most informative. 
 
The metrics we consider on the simplex are 
pull-back metrics of the Fisher information 
parameterized by operations within the simplex, 
inspired again by Aitchison’s (1982) 
transformations. Our algorithmic approach to 
maximize inverse volumes used sampling and 
contrastive divergences.  
 
To be more precise, we learned parameters ,  
to learn a map of the following form 

 
This map associates to a histogram x another 
histogram F(x) whose weights have been 
rescaled geometrically and multiplicatively. 
 
Experimental evidence shows that the metric 
obtained under our proposal outperforms 
alternative approaches, as can be seen in the 
figure below, where we used a F measure to 
compare several metrics, including ours, to 
measure clustering performance. Our method, 
plotted in the rightmost column, displays the best 
performance on these two datasets. 
 

 
 

 
Additional results in the paper illustrate the 
favorable empirical behavior of our method 
compared to all other baselines, even when such 
baselines make actual use of labels, as can be 
seen in the classification results provided in the 
figure below. 
 
To summarize, we were able to propose an 
unsupervised metric learning approach that was 
able to perform at the same level as comparable 
supervised metric learning approachs. 
 
We expect in future research to continue on this 
trend, and test these approaches on larger datasets, 
to test some of our hypothesis in a very large 
scale setting. 
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