
科学研究費助成事業　　研究成果報告書

様　式　Ｃ－１９、Ｆ－１９、Ｚ－１９ （共通）

機関番号：

研究種目：

課題番号：

研究課題名（和文）

研究代表者

研究課題名（英文）

交付決定額（研究期間全体）：（直接経費）

１２６０１

若手研究(B)

2015～2013

Webアプリケーションのセキュリティ分析の自動化

Automated security analysis of web applications

６０５１０６４１研究者番号：

ＬＩ　Ｘｉｎ（LI, Xin）

東京大学・情報理工学（系）研究科・研究員

研究期間：

２５７３００３９

平成 年 月 日現在２８ ６ ２

円 2,300,000

研究成果の概要（和文）：アクセスコントロールは安全性が重要なシステムにおいて、安全性を確保するための第一歩
である。しかしながら、現在においても、webアプリケーションのためのセキュリティポリシーは人手で設計されてお
り、このことは新たな脆弱性を導入する原因となっている。この研究では、webアプリケーションのための、自動的な
セキュリティポリシー生成のアルゴリズムを提案した。また、このアルゴリズムを実現するために、新しい静的解析ア
ルゴリズムと条件付きのプッシュダウンシステムモデル検査アルゴリズムを、提案した。今後、これに基づいてwebア
プリケーションのためのセキュリティポリシーの自動生成器の開発を実装する予定である。

研究成果の概要（英文）：This research is to apply program analysis and formal verification techniques to
automated web security analysis, with a focus on automated generation of access control policies for
Java-centric web applications. During the project, we first designed a systematic approach to automated
generation of access control policies for Java programs to pass the runtime authorization. Next, to put
the technique into practice, we studied efficient algorithms of those analysis modules underpinning the
algorithmic framework. Last but not least, we also developed algorithms for model checking
recursively-typed higher-order grammars and their potential application to web security analysis will be
studied as future work. In the future, we plan to further elaborate the proposed algorithms and
techniques, and conduct empirical studies of them, whereby eventually build a practical system for web
security analysis.

研究分野： ソフトウェア

キーワード： Web Security　Access Control　Model Checking　Program Analysis

 １版

様 式 Ｃ－１９、Ｆ－１９、Ｚ－１９（共通）

１．研究開始当初の背景

(1) The security of web applications is
more important than ever. Nowadays people
reply on web applications for social
networking, e-commerce, and a variety of
daily activities. In the meantime, the
number of web-based attacks has also
increased sharply. These attacks
motivated a great deal of research, among
which static program analysis and formal
verification techniques like model
checking play an important role in
detecting security vulnerabilities.

(2) Access control is the first step to
securing safety-critical systems. In
Java-centric web applications and
Microsoft .NET Common Language Runtime,
stack inspection based access control
mechanism is employed for runtime
authorization. Although the stack
inspection mechanism is well studied,
there is relatively little work on
automated generation of access control
policies, and in practice, system
administrators have to manually configure
access control policies based on
domain-specific knowledge and
trail-and-error testing. Since testing
cannot cover all program runtime behaviors,
a benign program may encounter runtime
authorization failures if it is assigned
with too few permission. On the other hand,
a program may become vulnerable points for
malicious attacks if it is granted more
permission than necessary.

(3) It is not an easy task to automatically
generate access control policies for web
applications. It requires a variety of static
analyses to fulfill the security analysis task,
and it is not enough clarified how to
precisely coordinate different analysis
modules in the same analysis framework.
Besides, to obey the Principle of Least
Privilege, we need precise analysis
algorithms for identifying optimal access
control policies for each web components,
whereas applying precise static program
analysis to production-level web
applications would face the long-standing
dilemma of making a compromise between
precision and scalability.

２．研究の目的

(1) The general objective of this research
is to develop and apply static program
analysis and formal verification

techniques to automated web security
analysis. We expect our techniques are
useful for solving security analysis
problems in fields other than web security
analysis, such as security analysis of
mobile computing software.

(2) Specially, as our first step, we focus
on developing algorithms, techniques and
tools that automatically generate optimal
access control policies for server-side
Java programs to pass runtime
authorization. The techniques can help
system administrators to configure access
control policies when deploying web
applications. In the meantime, the
automatically generated access control
policies can also be used to find malicious
components from domains of low-level trust
that attempt to access protected resources
requiring high-level trust.

(3) There is relatively little work on
automated generation of access control
policies. We are aware of considerable
research efforts from IBM researchers on
automatically generating access control
policies for web applications such as [①]
and [②]. In their work, they invented many
novel ideas for scaling-up their
permission analysis framework, by making
reasonable tradeoffs between precision
and practical efficiency. Unfortunately,
to our knowledge, their techniques are
protected by the U.S. patents. As our final
target, we aim to build an open source
automatic generator for access control
policies.

３．研究の方法

(1) We are concerned with applying precise
context-sensitive static program analysis
and formal verification techniques to web
security analysis. In contrast to testing,
the static analysis and verification
techniques conservatively model the
program’s runtime behaviors, given
abstract interpretation is properly
applied to the program beforehand. Besides,
using precise context-sensitive analysis
techniques ensures to generate optimal
access control policies.

(2) Specially, we are concerned with
investigating the reachability problem of
conditional (weighted) pushdown systems
that naturally model many security
analysis problems such as stack inspection
in which the program call stack is examined

at runtime. Reachability analysis of
conditional pushdown systems is the
cornerstone of access rights analysis, but
the problem is proved to be intractable in
general.

(3) For practical scalability, we study
new algorithms for those analysis modules
underpinning the algorithmic framework
for permission analysis, driven by
practical applications and demands, so as
to scale the analysis to real-world
instances.

４．研究成果

(1) First, we designed a systematic
approach to automated generation of access
control policies for (sever-side) Java
programs to pass the runtime authorization
based on stack inspection. The proposed
algorithmic framework for access rights
analysis is designed using techniques of
abstract interpretation and a variety of
context-sensitive static program analyses.
Our latest report for the algorithm design
can be found at
http://arxiv.org/pdf/1307.2964v2.pdf.

① One key to our technique is that, by
sharing the same abstract interpretation
of program calling contexts, different
context-sensitive analysis modules
required in permission analysis are glued
in a unified analysis framework. The
abstract interpretation of calling
contexts also serves as a bridge to reason
permissions and identify relevant
permissions at stack inspection points.

② We combine context-sensitive call
graph with dependency graph as the
underlying model for program analysis,
where the dependency graph essentially
encodes data flow of permission objects.
The reason why call graph does not suffice
as usual is that permission objects can be
created and referred to anywhere in the
program, by either accessing the heap,
i.e., field access, or by parameter
passing of method calls that are finished
before stack inspection. In either case,
the data flow of permission objects is
beyond the scope of the current call stack
inspected by the runtime authorization.

③ Our program model is also based on
context-sensitive call graph rather than
ordinary call graph, to precisely handle

dynamic features of Java languages like
late binding. The program model is encoded
as conditional weighted pushdown systems
and the analysis algorithm is solved as
model checking problems. We expect a good
precision of our analysis due to its
context-sensitive nature.

(2) To put the aforementioned algorithm
into practice, we investigated efficient
algorithms of those analysis modules
underpinning the algorithmic framework,
including:

① A sliding-window algorithm for
on-the-fly program analysis in the
framework of weighted pushdown systems,
with a target application to points-to
analysis of Java programs. Points-to
analysis is the first step of a precise
access rights analysis. We present a
sliding-window algorithm for weighted
pushdown systems that consists in a
sequence of local analysis on subparts of
the system, with no need for tackling the
entire state space of the system at once.
The computation cost of each local
analysis is lightweight, and the precision
of the whole system analysis is preserved
by accumulating a series of local fixed
points. Our algorithm specially takes into
account analysis problems for which one
could not assume a prior program control
flow, such as Java points-to analysis, the
disassembly of binary codes with indirect
jumps, etc. Solving such analysis problems
amounts to tackling an on-the-fly analysis
problem where the underlying system is
expanded when the analysis proceeds. We
have implemented and evaluated the
sliding-window algorithm with Java
points- to analysis as an application. Our
empirical study shows that the analysis by
the sliding-window algorithm always
outperforms the whole program analysis for
runtime efficiency.

② A new saturation-based algorithm for
reachability analysis of patterned
conditional pushdown systems. We observe
that the existing applications of
conditional pushdown systems carry
regular languages in terms of regular
expressions that obey certain patterns.
Therefore, we studied such patterned
subclasses of conditional pushdown
systems used in practice and presented new
backward/forward saturation algorithms
for solving reachability problems of them.
Our new algorithms give rise to

alternative solutions to reachability
analysis of the existing applications
using conditional pushdown systems, such
as reachability analysis of HTML5 parser
specifications, stack inspection, etc. We
leave it as future work for extensive
empirical studies of the new algorithms
driven by patterns.

③ An on-the-fly model checking algorithm
for conditional weighted pushdown systems.
Model checking conditional weighted
pushdown systems was shown to be reduced
to model checking weighted pushdown
systems, and an offline algorithm was
given that translates conditional
weighted pushdown systems to weighted
pushdown systems by synchronizing the
underlying pushdown systems and finite
state automata accepting regular
conditions. The translation, however, can
cause an exponential blowup of the system.
Therefore, we present an on-the-fly model
checking algorithm for conditional
weighted pushdown systems that
synchronizes the computing machineries
on-demand while computing post-images of
regular configurations. We developed an
on-the-fly model checker for conditional
weighted pushdown systems and applied it
to models generated from the reachability
analysis of the HTML5 parser specification.
Our preliminary experiments show that, the
on-the-fly algorithm drastically
outperforms the offline algorithm
regarding both space and time efficiency
in practice.

(3) Apart from devoting efforts to
efficient algorithms of pushdown systems,
we also studied higher-model checking
techniques that generalize finite-state
and pushdown model checking. Specially, we
designed and developed novel algorithms
for model checking recursively-typed
higher-order grammars that can be applied
to verify safety properties of
objected-oriented, concurrent, and
higher-order functional programs.
According to [③], the model checking
problem of recursively-typed higher-order
grammars is undecidable. We are concerned
with a sound procedure for it, especially
following the counterexample-guided
abstraction refinement paradigm.
Specially, our procedure is also
relatively complete with respect to a
regular set of term trees: the grammar is
eventually proved to be safe if there
exists a regular set of term trees that is

a safety inductive invariants for the
grammar. We have evaluated our tools on
examples from verification problems of
Featherweight Java programs and that of
multi-threaded Boolean programs with
recursion. For multi-threaded programs,
we studied properties of mutual exclusion
(e.g., the Peterson’s algorithm),
deadlock-freedom (e.g., for various
solutions to the dining philosopher
problem), and checking of assertion
violation (e.g., for simplified variants
of Bluetooth drivers). Its potential
application to web security analysis will
be studied as future work.

As future work, we plan to further
elaborate the proposed algorithms and
conduct extensive empirical studies of
them. We will also investigate new
verification techniques and analysis
algorithms for access-rights analysis in
the presence of subjects, as discussed in
[②]. Eventually, we hope to build an
open-source practical system for web
security analysis.

<引用文献>
① Emmanuel Geay, Marco Pistoia, Takaaki

Tateishi, Barbara G. Ryder, Julian
Dolby. Modular string-sensitive
permission analysis with
demand-driven precision. Proceedings
of 31st International Conference on
Software Engineering (ICSE’09), pp.
177-187, 2009.

② Paolina Centonze, Marco Pistoia, Omer
Tripp. Access-rights Analysis in the
Presence of Subjects. Proceedings of
the 29th European Conference on
Object-Oriented Programming
(ECOOP’15), pp. 222-246, 2015.

③ N. Kobayashi and A. Igarashi. Model
checking higher-order programs with
recursive types. In Proceedings of
ESOP 2013, volume 7792 of Lecture Notes
in Computer Science, Springer, 2013.

５．主な発表論文等
（研究代表者、研究分担者及び連携研究者に
は下線）

〔雑誌論文〕（計 1 件）
① Hua Vy Le Thanh, Xin Li. An On-The-Fly

Algorithm for Conditional Weighted
Pushdown Systems. 情報処理学会論文
誌:プログラミング、査読有、Vol. 7、No.
4、2014、pp. 1-7、

 DOI:

http://doi.org/10.2197/ipsjtrans.7.132

〔学会発表〕（計 4 件）
① Xin Li. An On-The-Fly Algorithm for

Conditional Weighted Pushdown Systems.
情報処理学会第 98 回プログラミング研
究発表会、東京大学理学部 7号館 (東京)、
2014 年 03 月 17 日~2014 年 03 月 18 日

② Xin Li. Generating Stack-based Access
Control Policies. 情報処理学会第 103
回プログラミング研究発表会、産業技術
総合研究所臨海都心センター (東京)、
2015 年 03 月 09 日~2015 年 03 月 10 日

③ Xin Li. Automata-Based Abstraction

Refinement for HORS Model Checking.
The 30th Annual IEEE Symposium on Logic
in Computer Science. グランドプリンス
ホテル京都 (京都府京都市左京区)、2015
年 07 月 06 日~2015 年 07 月 10 日

④ Xin Li. Automata-Based Abstraction
Refinement for HORS Model Checking.
NII Shonan Meeting Seminar 063:
Semantics and Verification of
Object-Oriented Languages. 湘南国際
村センター (神奈川県三浦郡葉山町)、
2015 年 09 月 21 日~2015 年 09 月 25 日

〔その他〕
ホームページ等
http://www-kb.is.s.u-tokyo.ac.jp/~li-xi
n/

６．研究組織
(1)研究代表者
 LI Xin （LI, Xin）

東京大学・情報理工学（系）研究科・特任
研究員

 研究者番号：６０５１０６４１

