平成27年度 科学研究費助成事業(特別推進研究) 研究進捗評価 現地調査報告書

課題	番	号	20	6000008	}	研	究	期	間	平成 26 年度~平成 30 年度
研究課題名			ヒドロゲナーゼと光合成の融合によるエネルギー変換サイクルの創成							
研究代表者名 (所属・職)			小江	誠司(九州フ	大学	工	学研究	究院	教授)

評価コメント

本研究では、ヒドロゲナーゼと光合成の融合によるエネルギー変換サイクルを構築するために、エネルギー変換サイクルの反応をアノード、カソード及びアノードとカソードの連結部位の3つに分類して研究を進めている。アノードは、H₂を電子源とするヒドロゲナーゼ系と、H₂Oを電子源とする光合成酸素発生系の2つに分けている。前者の燃料電池の研究に関しては、研究代表者等が新規に単離したヒドロゲナーゼS-77をアノードに用いた酵素燃料電池の開発に成功し、従来の白金燃料電池の1.8倍の発電性能を達成している。また、デヒドロゲナーゼ研究に関しては、新規にギ酸デヒドロゲナーゼS-77を単離し、これとヒドロゲナーゼS-77との複合酵素であるギ酸水素リアーゼS-77のモデル錯体を構築し、ギ酸からの触媒的水素発生に成功している。後者の光燃料電池に関しても研究が順調に進み、論文を執筆中である。さらに、ニトロゲナーゼモデルに関しても順調に研究が進んでいる。

カソードに分類されている、Fe/Ruペルオキソ錯体の研究に関しても研究が順調に進み、論文執筆中である。その他、アノードとカソードの連結部位に分類されているいくつかのテーマについても順調に研究が進んでいる。

以上のように、個々のテーマの研究進捗状況は極めて順調に進行しており、今後、本研究全体として優れた研究成果が達成されると期待する。