科学研究費助成事業(基盤研究(S))研究進捗評価

課題番号	26221310	研究期間	平成 2 6 (2014)年度 ~平成 3 0 (2018)年度
研究課題名	Runx2 遺伝子の転写制御機構の解	研究代表者	小守 壽文(長崎大学・医歯
	明と、骨粗鬆症・変形性関節症治療	(所属・職)	薬学総合研究科(歯学系)・教
	薬の開発	(平成31年3月現在)	授)

【平成29(2017)年度 研究進捗評価結果】

評価		評価基準	
	A+	当初目標を超える研究の進展があり、期待以上の成果が見込まれる	
0	A	当初目標に向けて順調に研究が進展しており、期待どおりの成果が見込まれる	
	A-	当初目標に向けて概ね順調に研究が進展しており、一定の成果が見込まれるが、一部	
		に遅れ等が認められるため、今後努力が必要である	
	В	当初目標に対して研究が遅れており、今後一層の努力が必要である	
	С	当初目標より研究が遅れ、研究成果が見込まれないため、研究経費の減額又は研究の	
		中止が適当である	

(意見等)

骨形成に必須の転写因子 Runx2 は変形性関節炎の原因遺伝子の 1 つであり、本研究では Runx2 の軟骨細胞特異的発現調節機構の解明と制御を目的としている。軟骨細胞特異的エンハンサー領域の特定は大いに進展し、全容の解明まで近づいている。また、骨芽細胞特異的エンハンサーと軟骨細胞特異的エンハンサーとの相互作用に関する新規知見も得られている。加えて、骨芽細胞特異的エンハンサーを用いた Runx2 レポーターアッセイ系を使用して、大がかりな化合物ライブラリーのスクリーニングを行い、有望な Rnux2 発現制御化合物を得ることに成功している。エンハンサー欠失遺伝子改変マウスの作成も順調であり、期待どおりの成果が見込まれる。

【令和元(2019)年度 検証結果】

検証結果	当初目標に対し、期待どおりの成果があった。	
	具体的には、Runx2の軟骨細胞や骨芽細胞における細胞・分子生物学的機能解析は期	
A	待どおりの成果を上げている。また、軟骨細胞特異的エンハンサー3領域、骨芽細胞特	
	異的343bpエンハンサー及び19の候補領域を同定し、これらをそれぞれ欠失したマ	
	ウスでは明確な表現型の変化は認めないことを示した。さらに、骨芽細胞特異的エンハ	
	ンサーを用いた Runx2 レポーターアッセイ系で、約6万の化合物ライブラリーから有望	
	な Runx2 発現制御化合物を得ており、骨量・骨密度を増加させる創薬への応用が期待で	
	きる。また、軟骨細胞特異的エンハンサーアッセイ系での変形性関節症の治療薬スクリ	
	ーニングについては現在進行中である。	