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Supervised learning for inhomogeneous set of graphs
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When supervised learning over graphs is applied to, for example, real
molecular graphs in QSAR, it suffers from the "inhomogeneity® originated from mixing different data
sources and different underlying mechanisms. To address this problem, we conducted research on the
following four topics: 1) develop and analyze computational methods for simultaneous learning of
predictive model and relevant subgraph features among all possible ones; 2) analyze the properties
of feature space of subgraph indicators with real datasets, in particular, boolean structures,
correlation structures, and redundancg; 3) develop computational methods for learning decision and
regression trees over all possible subgraph features, and its ensemble learning by boosting; 4)
deve%op a relaxed feature representation by introducing wildcard labels to node and edge labels of
graphs.
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