# 科学研究**費**助成事業

平成 30年 6月 7日現在

研究成果報告書

| 機関番号: 1 0 1 0 1                                                                                            |
|------------------------------------------------------------------------------------------------------------|
| 研究種目:基盤研究(C)(一般)                                                                                           |
| 研究期間: 2014~2017                                                                                            |
| 課題番号: 26390100                                                                                             |
| 研究課題名(和文) - 族半導体から構成されるワイヤー型フォノニック結晶の振動モードと対称性                                                             |
|                                                                                                            |
| 研究課題名(英文)Vibrational modes and symmetry of wire-type phononic crystals composed of III-V<br>semiconductors |
| 研究代表者                                                                                                      |
| 水野 誠司 (Mizuno Seiii)                                                                                       |
|                                                                                                            |
| 北海道大学・工学研究院・講師                                                                                             |
|                                                                                                            |
|                                                                                                            |
| 研究者番号・9022322                                                                                              |
|                                                                                                            |
| 交付決定額(研究期間全体):(直接経費) 3,900,000円                                                                            |

研究成果の概要(和文): - 族半導体から構成されるワイヤー型フォノニック結晶のフォノン分散関係およ び変位場を計算するアルゴリズムの開発を行った。このアルゴリズムを用いると構成物質の対称性とワイヤー断 面の対称性を考慮してモードごとに計算することができる。この手法を用いて、ウルツ鉱構造の結晶から構成さ れるGaN/AINナノワイヤー超格子の分散関係を計算し、振動モードの特徴を明らかにした。計算結果に基づき、 最近行われた実験結果の再解釈をおこなった。また、中空構造を有するナノワイヤーの分散関係も計算し、中空 構造が振動モードに与える影響を明らかにした。

研究成果の概要(英文): We developed the algorithm to calculate phonon dispersion relations and displacement fields of the wire-type phononic crystals composed of III-V semiconductors. By using this algorithm, phonon dispersion relations corresponding to each mode can be separately calculated, depending on the symmetry of the cross-section and constituent materials. We theoretically examined the coherent guided acoustic phonons generated and observed in a GaN/AIN nanowire superlattice with the use of ultrafast pump-probe spectroscopy. The propagation processes of the observed acoustic phonons are reexamined based on our numerical results. In addition, we studied the dispersion relations for hollow GaN nanowires, and discussed the effect of the hollow structure on the eigenfrequencies of each mode.

研究分野:工学

キーワード:フォノニック結晶 ナノワイヤー フォノン

1.研究開始当初の背景

(1)フォノニック結晶とは、バルクな結晶 基板に周期的に穴を開けたり、異なる物質を 埋め込むことによって人工的に作成された 周期構造のことをいう。周期構造の導入によ って生じるフォノニックバンドギャップお よびそれを利用してフォノンの伝播を人工 的に制御しようという狙いから、そのように 呼ばれている。そして、その新たな候補の1 つがナノワイヤー超格子である。

ナノワイヤー超格子は、単一ナノワイヤー 内に異なる半導体を混在させることにより、 北欧のグループにより合成された (Gudikson, 2002)、これは、電子回路をこれまで以上に小 型化することへの新たな道を開くものでもあ った。実際に、ナノワイヤー超格子を用いた 単電子トランジスタや共鳴トンネルダイオー ドなどが作成されて以来(Thelander et al., 2003)、電子物性や光物性などの基礎研究から 応用研究まで幅広い研究が行われ、ナノテク ノロジーへの広範な応用が期待されている。 (2)フォノン(格子振動)に関する研究は、 電子物性や光物性の研究に比べて遅れていた。 2006年に、日本国内でナノワイヤー超格子に 対するラマン散乱の実験が行われたが (Sekine et al., 2006)、この系に生じる光学フォ ノンに関する理論的な研究が皆無であるこ とから、その理解は進んでいなかった。また、 音響フォノンに関しては、水野によって、ね じれ振動モードのフォノン分散関係が解析 的に導出され、半径方向のフォノン閉じ込め 効果と軸方向の超格子構造による変調効果 がフォノンに及ぼす効果が明らかにされた (Mizuno, 2005)。ただし、他の振動モードに 対しては、数学的な困難が伴い、解析解の導 出は現実的には不可能であった。

(3)我々は、立方晶の物質からなり、円ま たは矩形の断面形状を持つナノワイヤー超 格子の分散関係を計算するプログラムを開 発した。そして、数値例として、閃亜鉛構造 をもつ GaAs と AlAs からなるワイヤー型フ オノニック結晶を取り上げ、計算を行った (Mizuno and Nishiguchi, 2009)。加えて、デバ イスとしての特性が調べられている InAs/InPナノワイヤー超格子に対しても計算 を行った(Mizuno, 2010)。断面形状は、結晶自 体の対称性を反映させた正方形に選んで計算 を行ったが、これは理論的な取り扱いが簡単 になるためである。また、円形断面の場合に も計算を行ったが、構成物質には等方近似を 用いていた(Mizuno, 2011)。

(4) このような状況のなかで、最近、ナノ ワイヤー超格子をフォノニックデバイスと して利用しようという狙いから、フェムト秒 ポンププローブ法を用いて、GaN/AIN ナノワ イヤー超格子におけるギガヘルツスケール の音響波の発生と伝播の観測が行われた (Mante, et al, 2013)。この先駆的な実験の結果 に対して、簡単なモデルに基づいた解釈が行 われたが、このモデルではワイヤーの半径方 向のフォノンの閉じ込め効果が取り入れら れていなかったため、より現実的な計算が望 まれていた。

(5)近年作成されている III 族窒化物ナノワ イヤーの多くはウルツ鉱構造で、円形断面に 加えて六角形の断面形状をとるものが多い。 以前に我々は、円形断面で閃亜鉛構造の GaN/AIN ナノワイヤー超格子に対して計算 を行っている。この計算で、構成物質の構造 異方性の効果を明らかにするため、等方性近 似を適用してみたところ、ギャップが消失し た。このことは、結晶の異方性を十分考慮す る必要があることを示していた。

また、実験的なフォノンの励起方法に依存 して、実際には励起されないフォノンのモー ドが多数存在しており、それらを正確に分類 しておくことが望ましい。

#### 2.研究の目的

(1)本研究の目的は、ウルツ鉱構造の III-V 族半導体から構成されるワイヤー型フォノ ニック結晶(ナノワイヤー超格子)のフォノ ン分散関係(格子振動状態)をモードごとに 効率よく計算するアルゴリズムを開発、改良 し、それを適用して、GaN/AIN ナノワイヤー の基礎的なフォノン物性(格子振動特性)明 らかにすることである。

(2)また、最近行われた、GaN/AIN ナノワ イヤー超格子におけるギガヘルツスケール の音響波の発生と伝播の観測の実験結果を 我々の計算結果に基づいて解釈を行い、実験 グループが行った説明を再検討し、そこで用 いられたモデルの妥当性および適用限界を 明らかにする。

(3)さらに、最近興味が持たれている、複 雑な内部構造を有するナノワイヤーにも注目 し、特に、中空構造を持ったナノワイヤー超 格子の振動モードを解析するための高精度の 計算プログラムを開発する。

3.研究の方法

(1)研究に用いる計算プログラムは、我々 が、これまでに開発したものに改良を加えて 用いる。振動モードは、フォノニック結晶を 構成する物質自身の対称性と、合成された系 の形状に依存する。我々の計算プログラムを、 立方晶または六方晶からなる円形または六 角形断面をもつナノワイヤー超格子に適用 できるように発展させ、それを用いて計算を 行う。

(2)数値計算の準備段階として、ワイヤー 断面の形状と振動モードの関係を、群論を用 いて整理する。考察する系の対称性に応じて、 振動モードの分類を行い、正しい対称性を持 った変位ベクトルとしてどのような関数が 適当であるかを調べる。

(3)振動モードを解析し、分散関係を得る ために、xyzアルゴリズムと呼ばれる変分法 に基づく数値計算法を用いる。その際、正し い対称性を持った変位ベクトルを基底関数 として用い、モードごとに計算を行う。 (4) 変分法の精度は、一般に基底関数の選 び方に依存する。完全系を張る基底関数をす べて用いれば、原理的には、同一の結果が得 られるはずであるが、それには無限個の基底 関数が必要となる。実際には、有限個で打ち 切る必要があるため、計算精度を上げるため には、適切な基底関数の組を選ぶ必要がある。 これまで、フォノン変位の各成分を軸方向に はブロッホ関数、面内ではべき関数を組み合 わせて構成していたが、べき関数の代わりに 2重ルジャンドル関数を用いた新たなアルゴ リズムを開発し、その有用性を確かめる。

#### 4.研究成果

(1) 近年作成されている III 族窒化物ナノ ワイヤーの多くはウルツ鉱構造で、六角形の 断面形状をとるものが多い。そこで、ウルツ 鉱構造の結晶から構成される、六角形の断面 をもつナノワイヤーおよびナノワイヤー超 格子に対して、空間群の理論に基づいて許さ れる振動モードを調べ、正しい対称性を持っ た変位ベクトルとして許される関数を数学 的に整理した。



**Fig. 1** Symmetry-adopted basis functions belonging to the irreducible representations of  $C_{6v}$ .

軸方向の周期性のため、その方向のブロッホ波数が定義される。第一ブリルアン域内  $0 < |k| < \pi / D$ の波数に対する k 群は、C<sub>6</sub>、で あり、既約表現は、A<sub>1</sub>、A<sub>2</sub>、B<sub>1</sub>、B<sub>2</sub>、E<sub>1</sub> と E<sub>2</sub>の6つである。それらの射影演算子を使っ て、この群の既約表現に属する基礎関数を構成した。基礎関数の対称性を、Fig. 1 に模式 的に示す。図では、高い対称性を持つ点にお けるフォノン変位が矢印で示されている。A<sub>1</sub>、 A<sub>2</sub> と E<sub>1</sub> モードは、それぞれ、膨張、ねじれ、 曲げモードに対応しているのがわかる。E<sub>1</sub>、 E<sub>2</sub> モードは 2 次元表現で、一般に複雑である。 (2)第一段階として、GaNのプレーンナノ ワイヤーに対して、分散関係の計算と、変位 場の計算を行った。Fig. 2 にモードごとに計 算した分散曲線を示す。



**Fig. 2** Phonon dispersion relations of the solid GaN nanowire with a hexagonal cross-section.

プレーンワイヤーには、特徴的な長さが存 在しない。したがって、図は、無次元周波数 を無次元波数の関数としてプロットしてあ る。Fig. 2 においてサブバンド構造がみられ るのは、ワイヤー軸に垂直な方向の波数が閉 じ込め効果によって、離散化していることに よる。

Fig. 3 には ka = 0.2 の波数における、下から 8 つの振動モードに対応するフォノン変位 を示す。下から 8 本の分散曲線は、それぞれ、 E<sub>1</sub>、A<sub>2</sub>、A<sub>1</sub>、E<sub>1</sub>と E<sub>2</sub>モードに対応する (Fig. 2)。E<sub>1</sub> と E<sub>2</sub>モードの分散曲線は、2 重に縮 退している。また、B<sub>1</sub> と B<sub>2</sub>モードの分散曲 線は、より高い周波数範囲に位置している。 高周波数のモードは複雑な変位パターンを 持つが、低周波数の場合はわかりやすいパタ ーンを示す (Fig. 3)。

Fig. 3 から、 $A_1$ モードと $A_2$ モードが、それ ぞれ膨張収縮、ねじれ運動を表すモードで、  $E_1$ モードがたわみを表すモードに対応して いることが視覚的によくわかる。 $E_1$ モードの 分散曲線は、k=0 近傍で、 $k^2$ に比例している。 これは、このモードがベンディングに対応し ていることを表す。また、 $k\to 0$ の極限では、 ワイヤー軸に垂直な x,y 軸方向の一様な並進 運動となる。 $A_1 \ge A_2$ モードの最も低い周波 数のモードはk=0近傍でkに比例している。  $k\to 0$ の極限で、 $A_1 \ge A_2$ モードは、それぞれ、 z 軸のまわりの一様回転および z 方向の一様 な並進に対応している。これらの一様な運動 は、無限小のエネルギーで励起可能である。

一方、B<sub>1</sub>、B<sub>2</sub> と E<sub>2</sub> モードの最低固有振動 数は、k=0で有限の値を持つ。これは対応す る変位ベクトルの方向が各々の軸のまわり で変化するという事実による、すなわち、変 位成分のいくつかはノードを持つ。これらの 振動モードを励起するためには、有限の大き





**Fig. 3** Displacement field patterns corresponding to the eight lowest modes at ka = 0.2 in a solid GaN nanowire with a hexagonal cross-section.

(3)次に中空構造を有するナノワイヤー に対して分散関係を計算した。Fig.4は、ワ イヤーの内径 a と外径 b の比が b/a=1/3 の場 合の計算結果である。中空構造があると、剛 性率が小さくなるので、ほとんどの分散曲線 は低周波数領域にシフトする。これらのシフ トは、振動モードの種類で大きく異なるよう に見える。



**Fig. 4** Phonon dispersion relations of hollow GaN nanowires with a hexagonal cross-section: b/a = 1/3;

特に、 $E_2$ モードの分散曲線は、大きくシフトしている。この効果を示すために、ka = 0.5に対する振動モードの固有振動数をb/aの関数として Fig. 5 に示す。 $B_1 \ge B_2$ モードの固有振動数が $E_2$ モードに加えて大きくシフトしていることがわかる。

最も低い  $A_1$ 、  $A_2$  と  $E_1$  モードは、小さい k

においてほとんど一定の固有振動数を持つ。 これらのモードは、全体としての並進または 回転に対応している。中空構造の存在は、こ のような運動には影響を及ぼさない。一方、 B<sub>1</sub>、B<sub>2</sub> と E<sub>2</sub> モードは、もともと変位ベクト ルの方向がナノワイヤーの中心近くで一様 でないので、中空構造の存在が大きな影響を 与えることになる。



**Fig. 5** Eigenfrequencies of the phonon modes at ka = 0.5 versus b/a in GaN nanowires with a hexagonal cross-section.

より高い周波数の高次の振動モードでは、 変位ベクトルの方向がナノワイヤーの中心 領域で、複雑に変化しており、固有振動数の b依存性は、それほど単純でない。

(4)最近、Mante らが、フェムト秒ポンプ プローブ法を用いて、GaN/AIN ナノワイヤー 超格子におけるギガヘルツスケールの音響 波の発生と伝播の観測を行った。実験で用い られた構造は、半径 75 nm の円形断面を持 ち、GaN 層と AIN 層の厚さはそれぞれ、56 nm と 42 nm であった。そこで、この構造に 対して、本研究で開発したプログラムを用い た数値計算を実行し、観測された過渡反射率 のスペクトルの解釈を行った。

ウルツ鉱の結晶からなる GaN/AIN ナノワ イヤー超格子の点群は、 $C_{6v}$ である。しかし、 我々の計算アルゴリズムにおいては、 $C_{6v}$ の 部分群である  $C_{2v}$ の対称性に基づいて基底関 数を構成すると計算プログラムが大幅に簡 略化される。この場合、モードは  $A_1$ 、 $A_2$ 、  $B_1 と B_2 モードに分類される。その時、基底$ 関数の個数は4分の1に削減され、計算する行列要素の数は16分の1になる。4つに分類されたモードそれぞれに対して、一般固有値方程式を解き、求められた固有ベクトルの対称性を調べることにより、本来の対称性であ $る <math>C_{6v}$ のモードに分類することができる。

Fig. 6 は、 $C_{2v}$ における $A_1$ モードに対する結果である。これらは、 $C_{6v}$ の対称性において $A_1$ モード(赤)と $E_2$ モード(青)に分類される。Fig. 6 の右図はそれぞれの変位パター

ンである。左が  $A_1$ モード、右が  $E_2$ モードである。



**Fig. 6** Dispersion relations of dilatational phonon modes of circular-cross-section GaN/AlN nanowire superlattice:  $A_1$  modes in  $C_{2v}$ .

Fig. 7 は、 $C_{2v}$ における  $A_2$  モードに対する結 果である。これらは、 $C_{6v}$ の対称性において  $A_2$  モード(赤)と  $E_2$  モード(青)に分類さ れる。Fig. 7 の右図はそれぞれの変位パター ンである。左が  $A_2$  モード、右が  $E_2$  モードで ある。



Fig. 7 Dispersion relations of dilatational phonon modes of circular-cross-section GaN/AlN nanowire superlattice:  $A_2$  modes in C2v.

同様に、Fig. 8 は  $C_{2v}$ における  $B_1$  モードと  $B_2$  モードに対する結果であるが、両者は完全 に重なっている。これらは、 $C_{6v}$ の対称性に おいて  $E_1$  モード(赤)と  $B_1$  モード(青)に 分類される。Fig. 8 の右図はそれぞれの変位 パターンである。

Mante ら研究において、実験的に励起検出 されたモードは、膨張収縮モード、すなわち、  $C_{6v}$ における $A_1$ モードであると考えられてい る。実験結果は、彼ら自身のモデルを用いて 計算された結果と比較された。このモデルで は、ナノワイヤー超格子の分散関係が、Rytov の方程式(よく知られた Kronig-Penny 方程式 に等しい)を通して GaN と AIN との分散曲 線を結合することによって求めている。



Fig. 8 Dispersion relations of dilatational phonon modes of circular-cross-section GaN/AlN nanowire superlattice:  $B_1$  and  $B_2$  modes in C2v.

Rytovの方程式は、もともとは、平面超格 子界面に垂直に伝播する縦波に対して導出 されたものである。界面は無限の広がりを持 つものと仮定されており、変位場は単一モー ドの平面波として扱われている。しかし、縦 波それ自身は、ワイヤー表面で起こる縦波と 横波の結合のために、ワイヤー構造の中で単 独で存在することができないことはよく知 られている。これらのことは、波が単一平面 波として表されることができないことを意 味しており、また、フォノンモードはワイヤ ーの断面積の形状に依存することを意味し ている。したがって、我々はフォノンの横方 向の閉じ込め効果を正確に扱う必要がある。

我々は、Rytov の方程式を用いた近似計算 も行い、上の数値計算と比較することで、そ の妥当性を吟味した。その結果、一番下のバ ンドと2番目のバンドの中ほどまでは、Rytov の方程式でよく再現できることが分かった。 例えば一番下のバンドでは、フォノン変位が ノードを持たないので、ワイヤーの半径方向 の閉じ込め効果が効かないからである。しか しながら、それより上の周波数になると大き なずれが生じ、さらには、この方程式では表 されない別のモードが現れるので、このモデ ルは適用できなくなることがわかった。

また、我々は、計算した分散曲線から群速 度を計算し、実験で観測されたフォノンの伝 播経路の検討を行った。ナノワイヤー超格子 の端で励起されたフォノンが、超格子とプレ ーンワイヤーの界面、および超格子と基板の 界面まで伝播し反射されて戻ってくる経路 をとったと解釈できることを示した。これは、 Mante らの解釈とは異なっているが、現実的 で自然な解釈であると考えられる。

(5)中空構造をもつナノワイヤー超格子な どの複雑な構造における計算精度を上げる ため、基底関数として2重ルジャンドル関数 を用いたアルゴリズムを開発し、計算プログ ラムを完成させた。2重ルジャンドル関数を 用いたことにより、狭い領域での変位場の変 動を効率よく表せるようになったことに加 え、対称性によるモードの分類も簡単に行う ことができる。この手法を用いることで、中 空構造を有するナノワイヤー超格子で見ら れた高周波領域のギャップ幅の過小評価が 改善された。この先、複雑な内部構造を有す るナノワイヤーの振動モードの解析に役に 立つものと期待している。

 5.主な発表論文等 〔雑誌論文〕(計11件) (学術論文) Yuki Iwai and Seiji Mizuno: "Coherent guided acoustic phonons in GaN/AlN nanowire superlattices", Jpn. J. Appl. Phys.57 (2018) 07LB02.査読有 DOI:10.7567/JJAP.57.07LB02 Y. Tanaka, Y. Shimomura, and N. Nishiguchi: "Acoustic wave rectification in viscoelastic materials" Jpn. J. Appl. Phys. 57 (2018) 34101. 查読有 DOI:10.7567/JJAP.57.034101 Y. Tanaka, S. Tomioka, and N. Nishiguchi: "Propagation of elastic waves in two-dimensional phononic crystal composed of viscoelastic materials" Jpn. J. Appl. Phys. 56 (2017) 34101. 査読有 DOI:10.7567/JJAP.56.034101 Seiji Mizuno: "Phononic bandgaps peculiar to solid-fluid superlattices", Jpn. J. Appl. Phys. 55 (2016) 17302. 査読有 DOI :10.7567/JJAP.55.017302 Y. Tanaka and N. Nishiguchi: "Effects of elastic anisotropy on acoustic-wave rectification" Jpn. J. Appl. Phys. 55 (2016) 014303. 査読有 DOI:10.7567/JJAP.55.014303 Y. Tanaka, D Kono, and N. Nishiguchi: "Rectification of elastic waves in beams with rectangular cross section" Jpn. J. Appl. Phys. 55 (2016) 104301. 査読有 DOI :10.7567/JJAP.55.104301 Y. Tanaka, N. Okashiwa, and N. Nishiguchi: "Interface acoustic waves at the interface between two semi-infinite phononic crystals" Jpn. J. Appl. Phys. 55 (2016) 104302. 査読 有 DOI:10.7567/JJAP.55.104302 Seiji Mizuno: "Vibrational modes and symmetry in a hexagonal-cross-section nanowire", Jpn. J. Appl. Phys. 53 (2014) 07KB02. 查読有 DOI:10.7567/JJAP.53. 07KB02

# [学会発表](計10件)

<u>Seiji Mizuno</u>:"Acoustic phonon modes in nanowire superlattices", International Symposium for Advanced Materials Research, Sun Moon Lake, Taiwan (2017).招待講演 Y. Iwai and <u>S. Mizuno</u>: "Coherent Guided Acoustic Phonons in GaN/AIN Nanowire Superlattices", Symposium on Ultrasonic

Electronics, Tagajo, Miyagi ,2017. Seiji Mizuno: "Variational method with Legendre-basis-functions: calculation of acoustic phonon modes in nanowires", Symposium on Ultrasonic Electronics, Tagajo, Miyagi ,2017. Seiji Mizuno: "Acoustic phonon modes and dispersion relations of nanowire superlattices", EMN Croatia meeting, Dubrovnik, Croatia, 4-7 May, 2016, 招待講演 S. Mizuno: "Acoustic phonon modes in hexagonal-cross-section nanowires with a wurtzite structure", The 15th International Conference on Phonon Scattering in Condensed Matter, Phonon 2015, Nottingham, UK, 12-17 July 2015. S. Mizuno: "Frequency gaps not originating from Bragg reflection in a solid-liquid phononic crystals", The 15th International Conference on Phonon Scattering in Condensed Matter, Phonon 2015, Nottingham, UK, 12-17 July 2015. T. Taira, A. Suzuki, N. Nishiguchi: "Electronphonon interaction in a dynamically curved graphene", The 15th International Conference on Phonon Scattering in Condensed Matter, Phonon 2015, Nottingham, UK, 12-17 July 2015. Seiji Mizuno: "phononic bandgaps peculiar to solid-liquid superlattices", EMN(Energy, Materials and Nanotechnology) meeting, Phuket, Thailand, 4-7 May 2015. 招待講演 S. Mizuno: "Flat Bands in Onedimensional Solid-Fluid Phononic Crystals", Symposium on Ultrasonic Electronics, Tokyo, 2014.

# 〔図書〕(計 1件)

Seiji Mizuno: "Resonant interaction of acoustic phonons with localized vibrational modes in superlattices", Horizons in World Physics 291, ISBN978-1-53611-008-1, Nova Science Publishers, Inc., (2017) 37-116.

# 6 . 研究組織

### (1)研究代表者

水野 誠司 (MIZUNO SEIJI) 北海道大学・大学院工学研究院・講師 研究者番号:90222322

# (2)研究分担者

西口 規彦 (NISHIGUCHI NORIHIKO) 北海道大学・大学院工学研究院・教授 研究者番号:40175518

田中 之博(TANAKA YUKIHIRO)北海道大学・大学院工学研究院・准教授研究者番号:00281791