• Search Research Projects
  • Search Researchers
  1. Back to previous page

非コード化セグメントを持つ進化型計算による人工神経回路網獲得

Research Project

Project/Area Number00J04999
Research Category

Grant-in-Aid for JSPS Fellows

Allocation TypeSingle-year Grants
Section国内
Research Field 知能情報学
Research InstitutionKobe University
Research Fellow 松村 嘉之  神戸大学, 大学院・自然科学研究科, 特別研究員(PD)
Project Period (FY) 2000 – 2002
Project Status Completed(Fiscal Year 2002)
Budget Amount *help
¥3,000,000 (Direct Cost : ¥3,000,000)
Fiscal Year 2002 : ¥1,000,000 (Direct Cost : ¥1,000,000)
Fiscal Year 2001 : ¥1,000,000 (Direct Cost : ¥1,000,000)
Fiscal Year 2000 : ¥1,000,000 (Direct Cost : ¥1,000,000)
Keywords進化型計算手法 / 非コード化セグメント / 人工神経回路網 / 組換え操作
Research Abstract

本研究では,自律分散型ユニットの制御手法として,人工神経回路網(Artificial Neural Networks : ANN)に着目した.このANNの結合荷重や構造の設計は,複雑かつ大規模でノイズを有する問題のため,解析的手法では最適化困難となり,確率的探索手法による設計が考えられる.特に,解の精度の観点から進化型計算に着目するが,従来の進化型計算手法には下限設定問題や局所解から抜け出せない等の問題点があるため,非コード化セグメントを用いた新たな進化型計算手法の枠組みを構築した.計算機実験,実機実験により,最適化能力の性能検証と進化ダイナミクスの解析を行った.
1.テスト関数を用いた計算機実験より以下の知見が得られた.
1 標準テスト関数で,従来の進化型計算に比べて,非コード化セグメントを持つ進化型計算は,収束速度が速く,局所解から抜け出すことができる.
2 統計的解析により,従来の進化型計算は探索戦略を計算世代によって変えないが,非コード化セグメントを持つ進化型計算では,集団は実質的探索域の中心付近を探索する個体と相対的に遠くを探索する個体とに分化していく.
3 ノイズを含むテスト関数においても上記の(1)(2)の特質がみられた.
4 標準テスト関数では,非コード化セグメントを持つ進化型計算には,組換え操作との相性があり,特に,multi-parentなdiscrete型組換え操作を用いると性能が向上する.
5 ノイズを含むテスト関数でも(4)の特質がみられた.
2.フィードフォワード型のANNを用いた計算機実験と実機実験により以下の知見が得られた.
1 結合加重のみが進化する場合,従来の進化型計算に比べて,非コード化セグメントを持つ進化型計算はタスク達成率が向上する.
2 構造と結合加重が進化する場合,進化型計算手法は可変長コードとなるが,multi-parentなdiscrete型組換え操作を用いることによって性能が向上する.
3.リカレント型のANNを用いた計算機実験により以下の知見が得られた.
1 結合加重のみが進化する場合,従来の進化型計算に比べて,非コード化セグメントを持つ進化型計算はタスク達成率が向上する.
2 探索が成功する場合はテスト関数と同様の進化ダイナミクスを示すことが観測された.

Report

(1results)
  • 2002 Annual Research Report

Research Products

(7results)

All Other

All Publications

  • [Publications] 松村 嘉之: "Multi-parent Recombinationを用いる進化戦略"計測自動制御学会論文集. Vol.39, No.2. (2003)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshiyuki Matsumura: "(μ/μ,λ)-Evolution Strategies for Noisy Objective Functions"Proceedings of International Workshop on Emergent Synthesis. 13-22 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshiyuki Matsumura: "Advantages of Global Discrete Recombination in (μ/μ,λ)-Evolution Strategies"Proceedings of IEEE World Congress on Computational Intelligence. 1848-1853 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshiyuki Matsumura: "The Combination of Recombination Operators in (μ/μ,λ)-Evolution Strategies"Proceedings of The 6th International Conference on Complex Systems. 347-352 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] Yoshiyuki Matsumura: "Robust Evolutionary Programming Applied to Artificial Neural Networks"Proceedings of Simulated Evolution and Learning 02. (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] 松村 嘉之: "Robust-ESによるContinuous-Time Recurrent Neural Networksの進化的設計"2002年度精密工学会秋季大会学術講演会. 275 (2002)

    • Related Report
      2002 Annual Research Report
  • [Publications] M.Mohammadian, et al.editors: "Computational Intelligence in Control"Idea Group Publishing. 336 (2003)

    • Related Report
      2002 Annual Research Report

URL :

Published : 2000-04-01   Modified : 2016-04-21  

Information FAQ News Terms of Use

Powered by NII kakenhi