• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Algebraic Homology and It's Application

Research Project

Project/Area Number 01540041
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field 代数学・幾何学
Research InstitutionKyoto University

Principal Investigator

IWAI Akira  Kyoto University Yoshida College Professor, 教養部, 教授 (70026764)

Co-Investigator(Kenkyū-buntansha) AKIBA Tomoharu  Kyoto University Yoshida College Professor, 教養部, 教授 (60027670)
YOSHINO Yuuji  Kyoto University Yoshida College Assistant Professor, 教養部, 助教授 (00135302)
UE Masaaki  Kyoto University Yoshida College Assistant Professor, 教養部, 助教授 (80134443)
FUJIKI Akira  Kyoto University Yoshida College Assistant Professor, 教養部, 助教授 (80027383)
SAITO Hiroshi  Kyoto University Yoshida College Assistant Professor, 教養部, 助教授 (20025464)
今西 英器  京都大学, 教養部, 助教授 (90025411)
伊達 悦朗  京都大学, 教養部, 助教授 (00107062)
鈴木 敏  京都大学, 教養部, 教授 (60026739)
Project Period (FY) 1989 – 1990
Project Status Completed (Fiscal Year 1990)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1990: ¥400,000 (Direct Cost: ¥400,000)
Fiscal Year 1989: ¥1,800,000 (Direct Cost: ¥1,800,000)
KeywordsTwisted conjugacy class / Hasse Principle / Hyperkahler structure / Moment map / Seifert fibered space / Diffeomophism type / Cohen-Macaulay module / Representation of algebras / 代数体の微分 / ザイフェルトファイバ-空間 / ケ-ラ-多様体 / モジュライ空間
Research Abstract

In our study we pursued the study of the homology of algebras and related topics. The main results are as follows :
1. Saito proved a Hasse principle on twisted conjugacy classes in the multiplicative group of division algebras, which asserts that the twisted conjugacy classes over an algebraic number field are determined by those over the completions of the number field. 2. Fujiki has shown that on the set of equivalence classes of the representations of the fundamental group of a compact Kahler manifold into a complex reductive algebraic group one can introduce a natural structure of a hyperkahler manifold ; more over, in the corresponding Calabi family the two special fibers are isomorphic, via the Hitchin correspondence, to the moduli space of stable Higgs bundle corresponding to the representations [2]. 3. Ue showed that the diffeomorphism types of the Seifert fibered 4-manifolds over the euclidean base orbifolds are determined by their fundamental groups and gave the correspondence between them and certain four types of geometries [4], and also showed similar results for the cases when the basse orbifolds are not euclidean. He gave the decompositions of simply connected elliptic surfaces as 4-manifolds along some Brieskorn homology spheres concretely in different two way. He also constructed the involutions on the elliptic surfaces which reverse the orientations of the fibers and base apaces. 4. Yoshino determined the Cohen-Macaulay representation type for certain Cohen-Macaulay local rings, and has studied, from the algebraic point of view, the relation between singularities and Cohen-Macualay representation types.

Report

(3 results)
  • 1990 Annual Research Report   Final Research Report Summary
  • 1989 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] 斎藤 裕: "On a Hasse prinCiple for σーConjugacy" G・of Math.Kyoto University. 29. 601-608 (1989)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 藤木 明: "The Noduli Space of Extremal Comract Kahler Manifolds and Generalized WeilーPatersson metrice" Publ.RIMS Kyoto Univ.26. 1-82 (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 上 正明: "Geometric 4ーmanifolds in the seasl of Thusston and Seifent 4ーmanifalds I" J.Math Soc.Japan. 42. 511-540 (1990)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 上 正明: "Geometric 4ーmanifolds in the sease of Thusston and Seifent 4ーmanfolds II" preprint.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 秋葉 知温: "Remarks on flat and Relatuely Seminormal Pairs" Kobe J.Math.6. 217-222 (1989)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 吉野 雄二: "CohenーMacaulay Modules over cohenーmachulay Rings" dondon Math SOC.dec.Note.

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Tomoharu, Akiba: "Remarks on flat and Relatively Seminormal Pairs" Kobe J. Math.v. 6. 217-222 (1989)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Masaaki, Ue: "Geometric 4-manifolds in the sease of Thusston and Seifert 4-manifolds I" J. Math. Soc. Japan. v. 42. (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Masaaki, Ue: "Geometric 4-manifolds in the sease of Thusston and Seifert 4-manifolds II"

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Hiroshi, Saito: "On a Hasse principle for a-conjugacy" J. Math. Kyoto Univ.v. 29. 105-117 (1989)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Akira, Fujiki: "The moduli Space of Extremal Compact Kahler Manifolds and Generalized Weil-Patersson Metrics" Publ. RIMS Kyoto Univ.v. 26. 1-82 (1990)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] Yuuji, Yoshino: "Cohen-Macaulay Modules over Cohen-Machulay Rings" London Math. Sci. Lec. Note.

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1990 Final Research Report Summary
  • [Publications] 斎藤 裕: "On a Hasse Principle for oーconyugacy" J・of Math.Kyoto Unwerrity. 29. 601-608 (1989)

    • Related Report
      1990 Annual Research Report
  • [Publications] 藤木 明: "Hyperkaller Strudtue on the moduli space of flat bundles"

    • Related Report
      1990 Annual Research Report
  • [Publications] 藤木 明: "偏極代数多様対のmoduli空間とkahler計量," 42. 231-243 (1990)

    • Related Report
      1990 Annual Research Report
  • [Publications] 上 正明: "Geometric 4ーmanifolds in the sense of thurston and Seifert 4ーmanfolds 1." J.Math.Soc.Japan. 42. 511-540 (1990)

    • Related Report
      1990 Annual Research Report
  • [Publications] 吉野 雄二: "CohenーMacaulay modules over CaherーMacaulay rings" decture Note Series of dondon Math Soc.146. 1-177 (1990)

    • Related Report
      1990 Annual Research Report
  • [Publications] 鈴木 敏: "On extensions of higher derivations for algebraic extensions of field of positive characters" J.Math.Kyoto Univ.29. 34-47 (1989)

    • Related Report
      1989 Annual Research Report
  • [Publications] 藤木 明: "The moduli space of extremal compact Kahler manifolds and generalized Weil-Peterson metrics" Publ.RIMS Kyoto Univ.26. 101-183 (1989)

    • Related Report
      1989 Annual Research Report
  • [Publications] 藤木 明: "Hyper Kahler structure on the moduli space of flat bundles"

    • Related Report
      1989 Annual Research Report
  • [Publications] 藤木 明: "Hyper Kahler structure on the moduli space of flat bundles" 藤木 明:

    • Related Report
      1989 Annual Research Report
  • [Publications] 上 正樹: "Geometric 4-manifolds in the sense of Thurston and Seifert 4-manifolds I"

    • Related Report
      1989 Annual Research Report

URL: 

Published: 1989-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi