劣微分作用素に対する非単調摂動理論とその物質科学への応用
Project/Area Number |
04F04050
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 外国 |
Research Field |
Basic analysis
|
Research Institution | Waseda University |
Principal Investigator |
大谷 光春 早稲田大学, 理工学術院, 教授
|
Co-Investigator(Kenkyū-buntansha) |
MINCHEV Emil Ivanov 早稲田大学, 理工学術院, 外国人特別研究員
MINCHEV Emil 早稲田大学, 理工学部, 外国人特別研究員
|
Project Period (FY) |
2004 – 2005
|
Project Status |
Completed (Fiscal Year 2005)
|
Budget Amount *help |
¥2,400,000 (Direct Cost: ¥2,400,000)
Fiscal Year 2005: ¥1,200,000 (Direct Cost: ¥1,200,000)
Fiscal Year 2004: ¥1,200,000 (Direct Cost: ¥1,200,000)
|
Keywords | hysteresis / phase transition / L^∞-energy method / vector order parameter |
Research Abstract |
(1)L^p空間では不可能であるが、L^∞空間ではじめて可能になるエネルギー評価の新たな手法である「L^∞-energy method」が開発され、様々な非線形方物型方程式に極めて有効であることが明らかにされつつある。この手法が、走化性粘菌の行動を記述する非線形放物型方程式系にも有効であることがわかり、従来の研究より大幅に弱い条件のもとで、解の存在、一意性が得られることが示された。他の非線形放物型方程式系への応用が期待される。 (2)系を記述する種々のパラメーターの値が同じであっても、系の状態は必ずしも同じにはならず、系の状態が、パラメーターの値のみならず、その過去の履歴に依存して決定される現象を、ヒステレシス効果と呼ぶ。ヒステレシス項を有するfood-prey-predator model方程式の解の存在、正値性、有界性、一意性を保証する従来の条件が大幅に緩められた。 ヒステレシス効果を表す項は、可能なすべてのヒステレシスループ(これは、未知関数に依存する)から作られる領域の指示関数(indicator function)の劣微分作用素で与えられるため、極めて強い非線形性を有している。このため、従来の研究では、ヒステレシス項を特徴付ける関数の2回微分までがすべて有界であるという強い条件が必要であったが、「L^∞-energy method」を応用することにより、これを2回連続的微分可能性条件にまで弱めることができた。さらに、解の一意性に対する証明が改良され、空間次元が4以下の場合まで示すことができるようになった。
|
Report
(2 results)
Research Products
(8 results)