• Search Research Projects
  • Search Researchers
  1. Back to previous page

2変数チェビシェフ多項式に付随する力学系

Research Project

Project/Area Number05640285
Research Category

Grant-in-Aid for General Scientific Research (C)

Allocation TypeSingle-year Grants
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionTokai University

Principal Investigator

内村 桂輔  東海大学, 理学部・数学科, 教授 (20092835)

Co-Investigator(Kenkyū-buntansha) 伊藤 達夫  東海大学, 理学部・数学科, 助教授 (20151516)
山口 勝  東海大学, 理学部・情報数理学科, 教授 (10056252)
永瀬 輝男  東海大学, 理学部・数学科, 教授 (90164425)
田中 実  東海大学, 理学部・数学科, 教授 (10112773)
杉田 公生  東海大学, 理学部・数学科, 教授 (60056083)
Project Period (FY) 1993
Project Status Completed(Fiscal Year 1993)
Budget Amount *help
¥2,000,000 (Direct Cost : ¥2,000,000)
Fiscal Year 1993 : ¥2,000,000 (Direct Cost : ¥2,000,000)
Keywordsカオス / フラクタル / 力学系 / 2変数チェビシェフ多項式 / 倍角写像
Research Abstract

2変数チェビシェフ多項式から導かれた複素平面上の力学系F_c(z)=z^2-c〓を調べた。
有名な複素平面上の力学系〓_c(z)=z^2-cは広く研究され、マンデルブロート集合、ジュリア集合については多くの結果が知られている。この〓_c(z)において、c=2の場合は、1変数チェビシェフ多項式になる。1変数チェビシェフ多項式を2変数チェビシェフ多項式に拡張して導かれたものが、上記のF_c(z)である。
〓_c(z)は一種の倍角写像であることは良く知られている。このことはF_c(z)についても同様に成り立つことがわかった。つぎに、F_c(z)について明らかになった性質を述べる。これらのことから私の定義した力学系F_c(z)は〓_c(z)の自然な拡張であることがわかった。
1.c=2の場合、k周期点の数が4^kであり、F_c(z)はSteinerのHypocycloid S上でchaoticである。もし、z〓Sならば、F^n_c(z)→∞(n→∞)となる。
2.A_c(∞)={z∈C|F^n_c(z)→∞(n→∞)}とおく。cが実数の場合、次の二つの条件が同等であることがわかった。
(1)-4〓c〓2
(2)A_c(∞)が、拡張された複素平面で考えて、単連結である。
3.c>2の時、C-A(∞)はカントール集合となる。そして、F_cはその集合上で4文字上のシフト写像とconjugateである。
これらの結果と同様なことが、力学系〓_c(z)についても成り立つことが良く知られている。我々の結果は〓_c(z)の結果の一つのアナロジーである。

Report

(1results)
  • 1993 Annual Research Report

Research Products

(4results)

All Other

All Publications

  • [Publications] Keisuke Uchimura: "The dynamical systems associated with Chebysheu polynomials in two variables" Research rep.Dept.Math.Tokai Univ.6. 1-87 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] Minoru Tanaka: "Cut Loci and distance spkeres on Alexandrou surface" Ast〓risque.

    • Related Report
      1993 Annual Research Report
  • [Publications] 杉田公生: "プログラム流れ図とプログラム仕様書の統合的処理系の研究" Proceeding of Soft ware Symposium ′93. 72-77 (1993)

    • Related Report
      1993 Annual Research Report
  • [Publications] Masaru Yamaguchi: "Existence of peciodic solations of second order non linear equation" Tech.Rep.Society for Applied Math.Sci. 5. 1-20 (1993)

    • Related Report
      1993 Annual Research Report

URL :

Published : 1993-04-01   Modified : 2016-04-21  

Information FAQ News Terms of Use

Powered by NII kakenhi