Project/Area Number |
05740136
|
Research Category |
Grant-in-Aid for Encouragement of Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
General mathematics (including Probability theory/Statistical mathematics)
|
Research Institution | Kyushu University |
Principal Investigator |
山本 野人 九州大学, 理学部, 助手 (30210545)
|
Project Period (FY) |
1993
|
Project Status |
Completed (Fiscal Year 1993)
|
Budget Amount *help |
¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1993: ¥1,000,000 (Direct Cost: ¥1,000,000)
|
Keywords | 数値的検証法 / 精度保証付き計算法 / 区間解析 / 楕円型方程式 / conformal scalar curvature equation / 有理数演算 |
Research Abstract |
今年度における精度保証付き計算法の研究の中で得られた、次のような新しい成果を報告する。 1.丸め誤差を処理するための演算手法の開発 既存の有理数演算用のパッケージをもとにして、区間演算を利用して丸め誤差を処理するプログラムを開発した。すなわち、 (1) 区間型の変数および演算を導入した。 (2) 加減算の度に連分数展開を用いて、有理数を与えられた桁数に丸め、その誤差を含むように区間幅を広げるルーチンを作成した。 このプログラムによって、丸め誤差の影響までも考慮した厳密な計算が可能となった。 2.非線形偏微分方程式の球対称解の漸近挙動に関する応用 conformal scalar curvature equationと呼ばれる非線形偏微分方程式の球対称解は、原点での値に依って三種の異なる漸近挙動を取ることが知られているが、どのタイプを取るかの判定法は一般には与えられていなかった。報告者は、積分方程式に対する精度保証付き計算法を考案し、これを用いてPohozaevの恒等式にあらわれる量を厳密に計算することで、漸近挙動の判定を行なう方法を提案した。 今後の研究計画としては、まず、これまでの結果をさらに発展させて、有理数演算及び区間演算、あるいは区間演算を応用した完全精度計算を用いた精度保証計算用の演算パッケージを開発することが挙げられる。次に、問題によって必要となる区間係数の扱いや誤差評価の方法などについての複雑な手順を上述の演算パッケージで計算可能になるように工夫する。これは同じ計算量で最大の精度が得られるような理論と演算双方での工夫を意味するだけでなく、応用の簡便さという視点から、できるだけ明解で適用範囲の広い手法の開発をも意味している。具体的には、上記の球対称解を扱う場合での積分方程式への変換及び数値積分の手法の応用を発展させていくことなどを考えている。
|
Report
(1 results)
Research Products
(2 results)