境界で退化する楕円型偏微分作用素の調和解析とその多変数複素解析への応用
Project/Area Number |
06740090
|
Research Category |
Grant-in-Aid for Encouragement of Young Scientists (A)
|
Allocation Type | Single-year Grants |
Research Field |
解析学
|
Research Institution | Tohoku University |
Principal Investigator |
新井 仁之 東北大学, 理学部, 助教授 (10175953)
|
Project Period (FY) |
1994
|
Project Status |
Completed (Fiscal Year 1994)
|
Budget Amount *help |
¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 1994: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | 楕円型偏微分作用素 / 調和関数 / ハ-ディー空間 / 強擬凸領域 / 特異積分 / 一般相対性理論 / ブラック・ホール / ブロック関数 |
Research Abstract |
本年度は、境界で退化する楕円型偏微分方程式の解の境界挙動及び解のなす関数空間の構造に関していくかの成果を得ることができた。成果は次のものである:(1)強擬凸領域上のベルグマン・ラプラシアンをモデルとするある種の楕円型偏微分作用素に関するラプラス方程式の解の境界挙動を解明することができた。(2)強擬凸領域上の解析関数からなるハ-ディー空間に関するヴォイタシュチ-クの予想をより一般化した形で肯定的に解決することができた。この解決のため、(1)の研究成果を本質的に用いた。(3)強擬凸領域上の解析的ブロック関数の種々の特徴付けを発見し、その関数の境界挙動を解明した。ここでも(1)の研究成果を利用した。(4)ベルグマン・ラプラシアンをモデルに境界付きコンパクト多様体の内部にリーマン計量のあるクラスを導入し、その上の楕円型偏微分作用素について次の結果を得た:(a)マルチン境界と位相境界の関連、(b)調和測度の評価、(c)ハ-ディー空間、BMO空間の構造の解明。 以上の結果のほかに、実解析学的手法によるアインシュタイン方程式の解の特異点の解析について研究した。 また、論文は現在準備中であるが、ブロック関数のカ-ルソン測度による特徴付けをテープリッツ作用素を使う全く新しい手法で証明した。この方法の発見により、ブロック関数のみならず消滅的ブロック関数と解析的なp-ベゾフ関数の作用素論的な新しい特徴付けが得られるに至った。 今回の研究成果により不変調和解析に新たな視点が加わったと考えられる。
|
Report
(1 results)
Research Products
(4 results)