• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies on Optimum Design method for multilayr Neural Net works with Minimum Network Sige

Research Project

Project/Area Number 07650422
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field 情報通信工学
Research InstitutionKanazawa University

Principal Investigator

NAKAYAMA Kenji  Kanazawa University, Graduate School of Nat.Sci.& Tech Prof., 自然科学研究科, 教授 (00207945)

Co-Investigator(Kenkyū-buntansha) WAN Youha  Kanazawa University, Faculty of Eng.Asst.Prof., 工学部, 講師 (10283095)
IKEDA Kazushi  Kanazawa University, Faculty of Eng.Asst.Prof., 工学部, 講師 (10262552)
馬 志強  金沢大学, 工学部, 講師 (10251935)
Project Period (FY) 1995 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥1,600,000 (Direct Cost: ¥1,600,000)
Fiscal Year 1997: ¥300,000 (Direct Cost: ¥300,000)
Fiscal Year 1996: ¥1,300,000 (Direct Cost: ¥1,300,000)
KeywordsNeural Networks / Multilayr Neural Networks / Activation Functions / Learning / Pattern Classification / Hidden Layr / 階層形ネットワーク / 教師あり学習 / リカレントネットワーク / 連想記憶 / 学習理論 / ダイナミクス / 学習則 / 隠れユニット / 雑音
Research Abstract

1. Pattern Classification by Multilayr Ne0ural Networks
In the signal detection based on frequency components, when the number of the signal samples is limited, accurate detection by linear methods is difficult. The multilayr neural networks can provide high classification performance. The vectors of the signals, which have a small number samples or low SNR,are usually distributed randomly in the N dimensional space. Therefore, the boundary, which separate these vectors becomes very complicated. This can be done by using the nonlinearity of the neurons in the multilayr NNs.
2. Selection of Minimum Training Data for Generalization
A data selection method has been proposed, by which the data belong to the different classes and across over the boundary are selected. These data can guarantee generalization, that is the data, which were not used in the training can be effectively separated.
3. Selection of Minimum Training Data for On-Line Training
The data are successively applied to the neural networks in the on-line applications. A method, which can select the useful data and hold the minimum number of the training data, has been proposed. Through several kinds of examples, the proposed method was confirmed to be useful.
4.Optimization of Activation Functions
The network size required for some applications is highly dependent on the activation functions, that is nonlinear functions. A simultaneous learning method for both connection weights and activation functons has been proposed. The parity check problem, which is a difficult task for the multilayr neural networks, can be effectively solved using the minimum number of the hidden units.

Report

(4 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • 1995 Annual Research Report
  • Research Products

    (28 results)

All Other

All Publications (28 results)

  • [Publications] 原 一之: "階層形神経回路網と線形信号処理の信号分離能力の比較" 情報処理学会論文誌. 38. 245-259 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara: "Multi-frequency signal classification by multilayer neural networks and linear filter methods" 電子情報通信学会英文論文誌. E80-A. 894-902 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] H.Ohnishi: "A neural demodulator for quadrature amplitude modulation signals" IEEE Proc.of ICNN'96. 1933-1938 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara: "A training data selection in on-line training for a simultaneous learning method" IEEE & INNS Proc.of IJCNN'98. (発表予定). (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Nakayama: "A simultaneous learning methodfor both activation functions and connection weights of multilayer neural networks" IEEE & INNS Proc.of IJCNN'98. (発表予定). (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara: "Training data selection methodfor generalization by multilayer neural networks" 電子情報通信学会英文論文誌. E81-A. 374-381 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara and K.Nakayama: "Comparison of signal classification performance between multilayr neural networks and linear signal processing methods" Information Processing Society of Japan Trans.vol.38. 245-259 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara and K.Nakayama: "Multi-frequency signal classification by multilayr neural networks and linear filter methods" IEICE Trans.Fundamentals. vol.E80-A. 894-902 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Ohnishi and K.Nakayama: "A neural demodulator for quadrature amplitude modulation signals" IEEE,Proc.of ICNN'96. 1933-1938 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara and K.Nakayama: "A training data selection in on-line training for a simultaneous learning method" IEEE&INNS,Proc.of IJCNN'98. (to be presented). (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Nakayama and M.Ohsugi: "A simultaneous learning method for both activation functions and connection weights of multilayr neural networks" IEEE&INNS,Proc.of IJCNN'98. (to be presented).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] K.Hara and K.Nakayama: "Training data selection method for generalization by multilayr neural networks" IEICE Trans.Fundamentals. vol.E81-A. 374-381 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 富川 義弘: "不等号条件を考慮した相互結合形NNによる対応付け形状認識" 電子情報通信学会 論文誌 D-II. J81-D-II,1. 72-83 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 原 一え: "Training Data Selection Method for Generalization by Multilayer Neural Networks" 電子情報通信学会 英文論文誌. (掲載予定). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 中山 謙二: "A Simultaneous Learning Method for Both Activation Functions and Connection Weights of Multilayer Neural Networks" IEEE & INNS.Proc.of IJCNN'98. (発表予定). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] Ashraf A.M.Khalaf: "A Cascade Form Predictor of Neural and FIR Filters and Its Minimum Size Estimation Based on Nonlinearity Analysis of Time Series" 電子情報通信学会 英文論文誌. (掲載予定). (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 原一之: "階層形神経回路網と線形信号処理法の信号分類能力の比較" 情報処理学会論文誌. 38巻2号. 245-259 (1997)

    • Related Report
      1996 Annual Research Report
  • [Publications] 大崎敦志: "偽記憶のない連想システムの解析と改良" 電子情報通信学会技術研究報告. NC96-41. 17-24 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] 大西克嘉: "A Neural Demodulator for Quadrature Amplitude Modulation Signals" Proc.of IEEE International Conference on Neural Networks (ICNN). 1933-1938 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] 三好誠司: "Probabilistic Memory Capacity of Recurrent Neural Networks" Proc.of IEEE ICNN. 1291-1296 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] 小堀英樹: "A Model of Dynamic Associative Memory" Proc.of IEEE ICNN. 804-809 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] 原一之: "Selection of Minimum Training Data for Generalization and On-line Training by Multilayer Neural Networks" Proc.of IEEE ICNN. 436-441 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] 原一之: "階層形ニューラルネットワークにおける学習データ選択法" 情報処理学会全国大会講演論文集(2). 2-41-2-42 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Kazuyuki HARA: "Signal Classification Based on Frequency Analysis Using Multilayer Neural Network with Limited Data and Computation" Proc. IEEE International Conference on Neural Networks. 1. 600-605 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Kazuhiro MINAMIMOTO: "Topology Analysis of Data Space Using Self-Organizing Feature Map" Proc. IEEE International Conference on Neural Networks. 2. 789-794 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Seiji MIYOSHI: "A Recurrent Neural Network with Serial Delay Elements for Memorizing Limit Cycles" Proc. IEEE International Conference on Neural Networks. 4. 1955-1960 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Yoshihiro TOMIKAWA: "Convergence Analysis of Recurrent Neural Network with Self-loops Based on Eigenvalues of A Connection Matrix" Proc. IEEE International Conference on Neural Networks. 5. 2642-2647 (1995)

    • Related Report
      1995 Annual Research Report
  • [Publications] Katsuyoshi OHNISHI: "A Neural Demodulator for Quadrature Amplitude Modulation Signals" Proc. IEEE International Conference on Neural Networks. (発表予定). (1996)

    • Related Report
      1995 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi