Project/Area Number |
07J03224
|
Research Category |
Grant-in-Aid for JSPS Fellows
|
Allocation Type | Single-year Grants |
Section | 国内 |
Research Field |
Algebra
|
Research Institution | The University of Tokyo |
Principal Investigator |
津嶋 貴弘 The University of Tokyo, 大学院・数理学研究科, 特別研究員(DC1)
|
Project Period (FY) |
2007 – 2009
|
Project Status |
Completed (Fiscal Year 2009)
|
Budget Amount *help |
¥2,700,000 (Direct Cost: ¥2,700,000)
Fiscal Year 2009: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2008: ¥900,000 (Direct Cost: ¥900,000)
Fiscal Year 2007: ¥900,000 (Direct Cost: ¥900,000)
|
Keywords | ガロワ表現の暴分岐 / 悪い還元 / モジュラー曲線の安定モデル / 分岐理論 / 1進エタール・コホモロジー / ガロワ表現 / l進高次元分岐理論 / Localized Abbes-Kato-Saito-Grothendieck-Ogg-Shafarevich formula / Conductor formula / Lefschetz跡公 / Swan Conductor / degenerate localization / logarithmic localization / Kato O-cycle |
Research Abstract |
モジュラー曲線の安定モデルについての研究をおこなった。 一般に局所体上の曲線が与えられたとき、種数が2以上であれば、基礎体を適当に拡大して、そこに底変換すれば、安定モデルをもつことが、ドリーニュ・マンホードの定理により知られている。 しかし、具体的に曲線の定義方程式から、安定モデルを導くアルゴリズムは知られていない。数論的に興味深く、その安定モデルの様子がわかりたい曲線としてモジュラー曲線が挙げられる。この問題に関して知られている主な先行結果は以下の通りである。 レベルが1の場合には、井草、ドリーニュ・ラポポルトの研究で知られている。 レベルが2のときにもエデグスホーベンにより計算された。 レベルが3のときは、最近のコールマンの研究でわかった。 この問題をレベルが4の時に、証明した。 私の計算は大変初等的なものである。 この場合の新しい現象として、還元の中にドリーニュ・ルスチィック曲線があらわれることがわかった。 モジュラー曲線の安定モデルを研究する意義は、ラングランズ対応の理解に貢献があることである。 別の様々な数論的応用があることは言を待たない。 その意味で、モジュラー曲線の安定モデルの理解は重要で意義深い。 これは、私の研究目的であるガロワ表現の暴分岐と多様体の悪い還元の関係を一つ深く理解できたことになる。
|
Report
(3 results)
Research Products
(9 results)