• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Special Functions in Many Variables

Research Project

Project/Area Number 08454030
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field 解析学
Research InstitutionKobe University

Principal Investigator

NOUMI Masatoshi  Kobe Univ., Dept.Math., Professor, 理学部, 教授 (80164672)

Co-Investigator(Kenkyū-buntansha) SEKIGUCHI Hideko  Kobe Univ., Dept.Math., Instructor, 理学部, 助手 (50281134)
TAKAYAMA Nobuki  Kobe Univ., Dept.Math., Professor, 理学部, 教授 (30188099)
YAMAZAKI Tadashi  Kobe Univ., Dept.Math., Professor, 理学部, 教授 (30011696)
SASAKI Takeshi  Kobe Univ., Dept.Math., Professor, 理学部, 教授 (00022682)
TAKANO Kyoichi  Kobe Univ., Dept.Math., Professor, 理学部, 教授 (10011678)
樋口 保成  神戸大学, 理学部, 教授 (60112075)
Project Period (FY) 1996
Project Status Completed (Fiscal Year 1996)
Budget Amount *help
¥5,600,000 (Direct Cost: ¥5,600,000)
Fiscal Year 1996: ¥5,600,000 (Direct Cost: ¥5,600,000)
Keywordshypergeometric function / Macdonald polynomial / spherical function / Grassmannian / confluent hypergeometric function / configuration space / Macdonald多項式 / Grassmann多様体
Research Abstract

The main subject of the this research project has been to construct a new prototype of the theory of special functions, by originating a systematic study of hypergeometric special functions in many variables. In this repect, the following results have been obtained from the viewpoints of (1) quantum group symmetry of difference systems, (2) confluent hypergeometric functions and Hamiltonian systems, (3) geometry of configurations spaces, and (4) representation theory and integral transformations, respectively.
(1) M.Noumi developed a theory of sperical functions on quantum symmetric spaces in relation to quantum group symmetry. In terms of quantum groups, he gave a representation-theoretic realization of commuting families of q-difference operators and of the q-hypergeometric orthogonal polynomials of Macdonald type.
(2) K.Takano studied in detail the procedure of confluence for hypergeometric functions over the Grassmannians, namely the degeneration of a general regular singularity to a confluent singularity. He also clarified the structure of the spaces of initial values and the mechanism of degeneration in Hamiltonian systems of Painleve' type.
(3) T.Sasaki investigated the spaces of configurations of one nondegenerate quadratic hypersurface and n hyperplanes in the projective space. He determined the differential system for the associated hypergeometric integrals and described the symmetry of them. For the configurations in the projective plane, in particular, he consturcted explicit power series solutions and independent cycles, and clarified the relationship with Appell's hypergeometric functions.
(4) From the viewpoint of Penrose transformations in symmetric domains, H.Sekiguchi studied the generalization of hypergeometric integrals and hypergeometric differential equations to higher ranks. She also established the finite dimensionality of their solution spaces by means of the method of unitary representations.

Report

(2 results)
  • 1996 Annual Research Report   Final Research Report Summary
  • Research Products

    (18 results)

All Other

All Publications (18 results)

  • [Publications] Noumi, M.: "Macdonald's symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces" Advances in Math.123. 16-77 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Noumi, M. et al.: "Dual pairs, spherical harmonics and a Capelli identity in quantum group theory" Compositio Mathematica. 104. 227-277 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Kimura, H., Matumiya, A. and Takano, K.: "A normal form of Hamiltonian systems of several time variables with a regular singularity" J. Differential Equations. 127-2. 337-361 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Sasaki, T. and Yagi, T.: "Sectional curvature of projective invariant metrics on a strictly convex domain" Tokyo J. Math.19. 419-433 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Matsumoto, K., and Sasaki, T.: "On the system of differential equations associated with a quadric and hyperplanes" Kyusyu J. Math.50. 93-131 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Sekiguchi, H.: "The Peurose transform for certain non-compact homogeneous manifold of V (n, n) ." J. Math. Sci. Univ. of Tokyo. 3. 655-697 (1996)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] M.Noumi: "Macdonald's symmetric polynomials as zonal sphercal functions on some quantum homogeneous spaces" Advances in Math. 123. 16-77 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] M.Noumi, T.Umeda and M.Wakayama: "Dual pairs, spherical harmonics and a Capelli identity in quantum group threory" Compositio Mathematica. 104. 227-277 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] H.Kimura, A.Matumiya and K.Takano: "A normal form of Hamiltonian systems of several time variables with a regular singularity" J.Differential Equations. 127. 337-364 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] T.Sasaki, and T.Yagi: "Sectional curvature of projective invariant metric on a strictly convex domain" Tokyo J.Math.19. 419-433 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] K.Matsumoto and T.Sasaki: "On the system of differential equations associated with a quadric and hyperplanes" Kyushu J.Math.50. 493-131 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] H.Sekiguchi: "The Penrose transform for certain non-compact homogeneous manifold of U (n, n)" J.Math.Sci.Univ.Tokyo. 3. 655-697 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1996 Final Research Report Summary
  • [Publications] Noumi,M.: "Macdonald's symmetric polynomials as zonal spberical functions on some quantum homegeneous spaces" Advances in Math.123. 16-77 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Noumi,M.et al.: "Dual pairs,spherical harmonics and a Capelli identity in quantum group theory" Compositio Mathematica. 104. 227-277 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Kimura,H.,Matumiya,A.and Takano,K.: "A normal form of Hamiltonian systems of several time variables with a regular singularity" J.Differential Equetions. 127-2. 337-364 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Sasaki,T.and Yagi,T.: "Sectional curvature of projective invariant metrics on a strictly convex domain" Tokyo J.Math.19. 419-433 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Matsumoto,K.,and Sasaki,T.: "On the system of differential equations associated with a quadvic and hyperplanes" Kyushu J.Math.50. 93-131 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] Sekiguchi,H.: "The Peurose transform for certain non-compact homogeneous manifold of V(n,n)." J.Math.Sci.Univ.of Tokyo. 3. 655-697 (1996)

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi