• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of structure activity correlation of molecules using Neural network

Research Project

Project/Area Number 08640639
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Physical chemistry
Research InstitutionOchanomizu University

Principal Investigator

NAGASHIMA Umpei  Ochanomizu University, Faculty of Science, Professor, 理学部, 教授 (90164417)

Project Period (FY) 1996 – 1997
Project Status Completed (Fiscal Year 1997)
Budget Amount *help
¥1,800,000 (Direct Cost: ¥1,800,000)
Fiscal Year 1997: ¥500,000 (Direct Cost: ¥500,000)
Fiscal Year 1996: ¥1,300,000 (Direct Cost: ¥1,300,000)
Keywordsneural network / structure-acitivity correlation / self-organized network model / ^<13>C-NMR shift / 再構築
Research Abstract

In 1996, a perceptron type neural network simulator for structure-activity corpelation of molecules has been developped with two different pre-education methods.
As an ecample of application, conformations of norbornene isomers were predicted using ^<13>C-NMR data. The predicted conformations are in excellent agreement with experimetns And it was suggested that ^<13>C-NMR data of only two specified carbons in the norbornene skeleton have strong correlation with the conformation of the main branch.
In 1997, a self-organized network model for high-speed learning was included in the neural network simulator. The performance of the self-organized network model was compared with that of perceptron using two- and three-dimensional exclusive OR problem ant the relationship between ^<13>C-NMR shift and the conformation of norbornane. In the case of ^<13>C-NMR shift and conformation of norbornane, a self-organized network seems to show strong nonlinear classification in comparsion with perceptron. 38
An artificial neural network simulation was also applied to the recognition and reproduction of time series data whose amplitudes and frequenciessimultaneously change with time. The results of our model were compared with those obtained by the least squares method using four kinds of model functions. Our model gives higher quality results than the least squares method especially in the prediction of amplitude change.

Report

(3 results)
  • 1997 Annual Research Report   Final Research Report Summary
  • 1996 Annual Research Report
  • Research Products

    (12 results)

All Other

All Publications (12 results)

  • [Publications] 長嶋 雲兵: "分子の構造活性相関解析のためのニューラルネットワークシミュレータ:Necoの開発(3)-組み合わせモデルとパーセプトロンの性能比較-" The Journal of Chemical Software. 4巻1号. 19-32 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 長嶋 雲兵: "振幅と周期が時間とともに変化する時系列データのニューラルネットワークによる予測" The Journal of Chemical Software. 4巻2号. 57-72 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 長嶋 雲兵: "振幅と周期が時間とともに変化する時系列データのニューラルネットワークによる予測" IPSJ Sig Notes. 97-MPS-16. 31-31 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Yasuko FUJITANI,Mitsue Onodera, Yoshimi ISU,Umpei NAGASHIMA,Haruo HOSOYA,Tomoo AOYAMA: "Development of NEural network simulator for structure-activity COrrelation of molecules : Neco (3) -Performance evaluation of Self-organized network and perceptron" J.Chem.Software. 1 (insatsuchu). 19-32 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Mitsue ONODERA,Umpei NAGASHIMA,Hiroaki YOSHIDA,Tomoo AOYAMA,Haruo HOSOYA: "Neural network reproduction of time series data with varying amplitudes and frequencie" J.Chem.Software. 2 (insutsuchu). 57-72 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Mitsue ONODERA,Umpei NAGASHIMA,Hiroaki YOSHIDA,Tomoo AOYAMA,Haruo HOSOYA: "Neural network reproduction of time series data with varying amplitudes and frequencie" IPSJ Sig Notes. 97-MPS-16. 31-36 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] Mitsue ONODERA,Umpei NAGASHIMA,Hiroaki YOSHIDA,Tomoo AOYAMA,Haruo HOSOYA: "Neural network reproduction of time series data with varying amplitudes and frequencie" IPSJ Sig Notes. 95-HPC-63. 13-18 (1996)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1997 Final Research Report Summary
  • [Publications] 長嶋雲兵: "分子の構造活性相関解析のためのニューラルネットワークシミュレータ : Neroの開発(3) -組み合わせモデルとパーセプトロンの性能比較-" The Journal of Chemical Software. 4巻1号. 19-32 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 長嶋雲兵: "振幅と周期が時間とともに変化する時系列データのニューラルネットワークによる予測" The Journal of Chemical Software. 4巻2号. 57-72 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] 長嶋雲兵: "振幅と周期が時間とともに変化する時系列データのニューラルネットワークによる予測" IPSJ Sig Notes. 97-MPS-16. 31-36 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 長嶋雲兵: "振幅と周期が時間とともに変化する時系列データのニューラルネットワークによる予測" IPSJ Sig Notes. 96-HPC-63. 13-18 (1996)

    • Related Report
      1996 Annual Research Report
  • [Publications] 長嶋雲兵: "Si:2p core-level photoexcitation and photoionization of organosilicon molecules" Journal of Electron Spectroscopy and Related Phenomena. 79. 499-502 (1996)

    • Related Report
      1996 Annual Research Report

URL: 

Published: 1996-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi