• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study of contact structures and foliations on 3-manifolds

Research Project

Project/Area Number 09640130
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionChuo University

Principal Investigator

MITSUHATSU Yoshihiko  Chuo University, Faculty of Science & Eng., Professor, 理工学部, 教授 (70190725)

Co-Investigator(Kenkyū-buntansha) MIZUTANI Tadayoshi  Saitama University, Faculty of Science, Professor, 理学部, 教授 (20080492)
TAKAKURA Tatsuru  Chuo University, Faculty of Science & Eng., Lecturer, 理工学部, 講師 (30268974)
MATSUYAMA Yoshio  Chuo University, Faculty of Science & Eng., Professor, 理工学部, 教授 (70112753)
KANOA Yutaka  Hokkaido University, Faculty of Science, Instructor, 理学部, 助手 (30280861)
ONO Kaoru  Hokkaido University, Faculty of Science, Professor, 理学部, 教授 (20204232)
山本 慎  中央大学, 理工学部, 教授 (10158305)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥3,100,000 (Direct Cost: ¥3,100,000)
Fiscal Year 1999: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1998: ¥1,000,000 (Direct Cost: ¥1,000,000)
Fiscal Year 1997: ¥1,100,000 (Direct Cost: ¥1,100,000)
KeywordsContact Structure / foliation / symplectic structure / bi-contact structure / projectively Anosoo flow / symplectic filling / geometric quantization / tight contact structure / Hamilton力学系 / 超曲面 / Symplectic構造 / タマ接触構造 / シンプレクティック構造 / 擬正則曲線 / Poisson構造 / Legendre結び目 / Thurston-Bennequin不変量
Research Abstract

Mitsumatsu and Mizutani studied and constructed many examples of bi-contact structures with a research group of foliations. Especially, they constructed a bicontact structure on the 3-sphere which consists both of over-twisted ones. Still the realization problem of homotopy class of plane fields as such structures remains to be studied.
Ono has established in a colaboration with Fukaya foundamental theory in applying the J-curves to symplectic topology, overcoming the notorious problem of negative multiples. Major consequences from this are the definition of Gromov-Witten invariants for general symplectic manifolds and the positive solution for a version of the Arnold conjecture for the same class. He and Kanda also worked on applying Seiberg-witten theory to contact topology, colaborating with Ohta, and got toplogical constraints on the symplectic filling 4-manifolds around simple singularities. This streem of works continues and is expected to make a further progress, especially in relation with the last subject of study below.
Kanda studied contact structures in more toplogical way, and classified tight contact structures on 3-torus and showed nonexactness of Bennequin's inequality.
Takakura and Mitsumatsu have been searching for the formalism to study contact topology by using Lagrangian/Legendrian torus, instead of looking at J-curves in the symplectization. This is based on the theory of geometric quantization, on which Takakura has been working. They found that most of major concepts in the theory of algebraic functions in one variable can be suitably translated and planted in this framework. However, studying contact topology through this remains as the next step of research to go.

Report

(4 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • 1997 Annual Research Report
  • Research Products

    (24 results)

All Other

All Publications (24 results)

  • [Publications] K. Fukaya & K. Ono: "Arnold conjecture and Gromov-Witten invariant"Topology. 36. 933-1048 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K. Fukaya & K. Ono: "Arnold conjecture and Gromov-Witten invariant for general symplectic manifolds"Fields Institute Communications A.M.S.,. 24. 173-190 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] H. Ohta & K. Ono: "Symple singularities and topology of symplectic-filling 4-manifolds"Comment. Math. Heb. 74. 575-590 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Kanda: "On the Thurston-Bennequin invariant of Legendrian knots and non exactness of Bennequin's inequality"Invest. Math. 133. 227-242 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Y. Kanda: "The classification of tight contact structures on the 3-Toucs"Communication in Analysis and Geometry. 5-3. 413-438 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] 三松佳彦: "3 Dimensional Contact topology"日本数学会. 120 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kenji FUKAYA & Kaoru ONO: "Arndol Conjecture and Gromov-Wittern invariant"Topology. 36. 933-1048 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kenji FUKAYA & Kaoru ONO: "Arnold Conjecture and Gromov-Wittern invariant for genernal symplectic nmanifolds"Fields Institute Communications, A.M.S.. 24. 173-190 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Hiroshi OHTA & Kaoru ONO: "Simple singularities and topology of symplectic filling 4-manifolds"Comment. Math. Helv.. 74. 575-590 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yutake KANDA: "On the Thurston-Bemnequin invariant of Legendrian knots and non exactness of Bemnequin's isequality"Invest. Matn.. 133. 227-242 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yutake KANDA: "The classification of tight contact structure on the 3-torus"Communications in Analysis and geometry. 5-3. 413-438 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Yoshihiko MITSUMATSU & Kaoru ONO: "3-dimensional contact topology"MEMOIR in Japanese, Math. Soc. Japan. Vol.1(to appear). (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] K.Fukaya & K.Ono: "Arnold Conjecture and Gromov-Witten Invariant"Topology. 38. 933-1048 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] K.Fukaya & K.Ono: "Arnold Conjecture and Gromov-Witten Invariant for general symplectic monofelds"Fieds Institute Communications, A.M.S,. 24. 173-190 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] H.Ohta & K.Ono: "Simple Singulari Ties and Topology of Sympletically Filling 4-manifolds"Commentarii Math. Helv.. 74. 575-590 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Yoshio Matsuyama: "Real Hyper surfaces in complex projectire space satisfying a certain condition on Ricci tensor"Nihonkei Math. Laurnel. 10. 171-178 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] 三松 佳彦: "3次元接触トポロジー"日本教学会. 120 (2000)

    • Related Report
      1999 Annual Research Report
  • [Publications] Y.Matsuyama: "On totally realminimal submanifolds in DP^n(C)" Tsukuba Journal of Mathematics. 22・2. 477-482 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Ono: "On Amold's conjecture for symplectic fixed points" Banach Conter Publications. 45. 13-24 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] K.Fukaya & K.Ono: "Amold conjecture and Gromoo-Witten in oaviants" Topology. (掲載予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Kanda: "On the Thurston-Benneguin invariant of Legendrian Rnots and nonexactness of Bennegain's ineguality" Inventionesse Mathematiace. 133. 227-242 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Y.Kanda: "The classification of Tight contact structures on the 3-Torus" Communications in Analysis and Geometry. 5-3. 413-438 (1997)

    • Related Report
      1998 Annual Research Report
  • [Publications] Kaoru ONO: "On Arnold′s conjecture for symplectic fixed points" Banach Center Publ.,Proc.on"Geometry and Homotopy". (予定).

    • Related Report
      1997 Annual Research Report
  • [Publications] Yutaka KANDA: "On the Thurston-Bennequin invariant of.legendrian knots and non exactness of Bennequin′s Inequatity" Inventiones Mathematicae. (予定).

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi