• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Neural network learning with regulatizers and generalization ability

Research Project

Project/Area Number 09680371
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionKyushu Institute of Technology

Principal Investigator

ISHIKAWA Masumi  Kyushu Institute of Technology Dept. of Control Engineering & Science, Professor, 情報工学部, 教授 (60222973)

Co-Investigator(Kenkyū-buntansha) ZHANG Hong  Kyushu Institute of Technology Dept. of Control Engineering & Science, Assistant Professor, 情報工学部, 助手 (30235709)
Project Period (FY) 1997 – 1998
Project Status Completed (Fiscal Year 1998)
Budget Amount *help
¥2,200,000 (Direct Cost: ¥2,200,000)
Fiscal Year 1998: ¥800,000 (Direct Cost: ¥800,000)
Fiscal Year 1997: ¥1,400,000 (Direct Cost: ¥1,400,000)
Keywordsgeneralization / regularization / Gaussian regularizer / Laplace regularizer / linear regression / ガウシアン正則化項
Research Abstract

The relation between neural network learning with regularizes and generalization ability is clarified both theoretically and empirically. In the present theoretical study, a Laplacian regularize, a Gaussian regularize and their combinations are considered.
In the first stage, various empirical procedures in a structural learning with forgetting proposed by the authors are theoretically clarified. For example, a structural learning with selective forgetting has something to do with the line process in vision under the assumption that a scene is almost smooth except a small number of discontinuous points.
In the second stage, a estimation of mean value using regularization is theoretically studied. It is the simplest case of multiple regression models. It is demonstrated that the proposed regularization method is effectively applied to real data.
In the third stage, excessive simplification in a formulation of generalization errors in multiple regression models is rectified. So for it has been assumed that input variables are mutually independent, and true model parameters and a noise variance are known a priori. We modified formulations so as to allow correlations between input variables. We propose a novel procedure for theoretically evaluating regularizes based on data. Firstly, we estimate model parameters and a noise variance from data. Secondly, assuming that these estimates are true, we calculate the optimal regularization parameters and model parameters by the previously proposed method. It provides, hopefully, their better estimates. Thirdly, assuming that the resulting estimates are true, we again calculate the optimal regularization parameters and model parameters. This procedure can be repeated iteratively. This iterative estimation is a key idea of the present study. Applications of the proposed method to real data demonstrates that better estimates with smaller generalization errors are obtained successfully.

Report

(3 results)
  • 1998 Annual Research Report   Final Research Report Summary
  • 1997 Annual Research Report
  • Research Products

    (20 results)

All Other

All Publications (20 results)

  • [Publications] Masumi Ishikawa: "Designing neural netwarks by a combination of structural learning and genetic algorithms"Artifical Neural Networks-ICANN'97,Lasanne,Switzerland,Lecture Notes in Computer Science,1327. 415-420 (1997)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Ishikawa,K.Yoshida,S.Amari: "Designing regularizers by minimizing generalization errors"Proceedings of IJCNN'98,1988 IEEE World Congress on Computational Intelligence. 2328-2333 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 石川眞澄: "特集 脳と情報処理 -脳はどこまで創れるのか-ニューラルネットワークによるデータからの規則の発見"Computer Today. 90. 16-21 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 石川眞澄: "ソフトコンピューティングと情報統合"システム制御情報学会. 43・4. 174-179 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] 島田博仁,石川眞澄,甘利俊一: "データに基づく汎化誤差最小化におる正則化項の設計"電子情報通信学会技術研究報告,NC99-128. 99・685. 81-88 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Ishikawa,H.Shimada,S.Amari: "Interative design of regularizers based on data by minimising generalization errors"IJCNN'2000. (to appear).

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masumi Ishikawa: "Knowledge-Based Neuroconputing,Chapter 5,"Structural learning and role discovery,in I.Clote and J.Zurada Eds.. 54 (2000)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masumi Ishikawa: "Designing neural networks by a combination of structural learning and genetic algorithms"ICANN'97 Lecture Notes in Computer Science. 1327. 415-420 (1997)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masumi Ishikawa, Kazuhiro Yoshida, and Shun-ichi Amari: "Designing regularizes by Minimizing generalization errors"Proceedings of IJCNN'98, 1998 IEEE World Congress on Computational Intelligence. 2328-2333 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M. Ishikawa: "Rule discovery from data using neural networks"Computer Today. No.90(in Japanese). 16-21 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M. Ishikawa: "Soft computing and information integration"Systems, Control and Information. Vol.43, No.4(in Japanese). 174-179 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] H. Shimada, M. Ishikawa, and S. Amari: "Designing regularizes based on data by minimizing generalization errors"Technical Report of the Institute of Electronics, Information and Communication Engineers. NC99-128(in Japanese). 81-88 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masumi Ishikawa, Hirohito Shimada and Shun-ichi Amari: "Iterative design of regularizes based on data by minimizing generalization errors"Proceedings of IJCNN'2000. (to appear).

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] Masumi Ishikawa: "Structural Learning and rule discovery Knowledge-based Neurocomputing, Chapter 5 (I. Cloete and J. Zurada Eds.)"MIT Press. 153-206 (2000)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1998 Final Research Report Summary
  • [Publications] M.Ishikawa,K.Yoshida,S.Amari: "Designing regularizers by minimizing generalization errors" Proceedings of IJCNN'98 1998 IEEE World Congress on Computational Intelligence. 2328-2333 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] X.Yu,M.Ishikawa,H.Chi: "Rulu extraction from data by combining a structural learning with forgetting and linear discriminant functions" ICONIP'98. 3. 1626-1629 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] 石川眞澄: "特集 脳と情報処理…脳はどこまで創れるのか ニューラルネットによるデータからの規則の発見" Computer Today. 90. 16-21 (1999)

    • Related Report
      1998 Annual Research Report
  • [Publications] 石川真澄.吉田一浩.甘利俊一: "正則化学習における汎化誤差の理論的検討" 日本神経回路学会 第8回全国大会 講演論文集. 174-175 (1997)

    • Related Report
      1997 Annual Research Report
  • [Publications] 吉田一浩.石川真澄.甘利俊一(理研): "汎化誤差最小化による正則化項の設計" 電子情報通信学会技術研究報告. NC97-146. 55-62 (1998)

    • Related Report
      1997 Annual Research Report
  • [Publications] Masumi Ishikawa,Kazuhiro Yoshida,Shun-ich Amari: "Designing Regularizers by Minimizing Generalization Errors" IJCNN'98. 掲載予定. (1998)

    • Related Report
      1997 Annual Research Report

URL: 

Published: 1997-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi