• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Meromorphic functions on Riemann surfaces, Weierstrass points

Research Project

Project/Area Number 10440051
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionYamaguchi University

Principal Investigator

KATO Takao  Yamaguchi University, Faculty of Science, Professor, 理学部, 教授 (10016157)

Co-Investigator(Kenkyū-buntansha) HOMMA Masaaki  Kanagawa University, Faculty of Engineering, Professor, 工学部, 教授 (80145523)
YANAGIHARA Hiroshi  Yamaguchi University, Faculty of Engineering, Associate Professor, 工学部, 助教授 (30200538)
MASUMOTO Makoto  Yamaguchi University, Faculty of Science, Associate Professor, 理学部, 助教授 (50173761)
OHBUCHI Akira  Tokushima University, Faculty of Arts and Science, Associate Professor, 総合科学部, 助教授 (10211111)
SHIBA Masakazu  Hiroshima University, Faculty of Engineering, Professor, 工学部, 教授 (70025469)
山田 陽  東京学芸大学, 教育学部, 助教授 (60126331)
木内 功  山口大学, 理学部, 助教授 (30271076)
Project Period (FY) 1998 – 1999
Project Status Completed (Fiscal Year 1999)
Budget Amount *help
¥6,100,000 (Direct Cost: ¥6,100,000)
Fiscal Year 1999: ¥2,900,000 (Direct Cost: ¥2,900,000)
Fiscal Year 1998: ¥3,200,000 (Direct Cost: ¥3,200,000)
Keywordscompact Riemann surface / algebraic curve / meromorphic function / gonality / Brill-Noether theory / normal generation / Weierstrass point / Weierstrass 点 / リーマン面 / ブリル・ネーター理論
Research Abstract

In this project, we studied classification problems of compact Riemann surfaces through the existence of meromorphic functions on them. It is one of the central subject on the theory compact Riemann surfaces. The main results we obtained are the following :
(a) Let k be a prime number. Assume C is a compact Riemann surface of genus g which is a k-sheeted covering of a compact Riemann surface of genus h>0. In this case, we studied the structure of a subvariety WィイD31(/)dィエD3(C) of the Jacobian variety J(C). Then, we have : "If g and d are large enough comparable to k and h, then WィイD31(/)dィエD3(C) is reduced and irreducible". (As a matter of fact, we have quantitative estimates for g and d).
(b) For a compact Riemann surface C of genus g, H. Martens proved that dim WィイD3r(/)dィエD3(C)【less than or equal】d-2r for d【less than or equal】g+r-1. Then, Mumford (resp. Keem) gave a characterization of WィイD3r(/)dィエD3(C) which sarisfies dim WィイD3r(/)dィエD3(C)=d-2r (resp. d-2r-1) for d【less than or equal … More 】g+r-3 (resp. g+r-5). If C is of odd gonality, then it is known that dim WィイD3r(/)dィエD3(C)【less than or equal】d-3r. In 1996, G. Martens gave a characterization of WィイD3r(/)dィエD3(C) which satisfies dim WィイD3r(/)dィエD3(C)=d-3r. As an extension of this result, we gave a characterization of WィイD3r(/)dィエD3(C) which satidfies dim WィイD3r(/)dィエD3(C)=d-3r-1.
(c) Let L be a very ample line bundle of degree d and dimension r on a compact Riemann surface of genus g. We studied the normally generatedness of L in case d is near to g. As a result, we succeeded to describe L which fails to be normally generated in case d=2g-2, 2g-3. Moreover, we showed that if L is special, it is always normally generated in case d=2g-5. In case d=2g-6, there is one exceptional case, in which L fails to be normally generated. In our discussion, a critetion for L to be normally generated due to Green-Lazarsfeld plays an important role. Finally, we thought about the case that L contributes the Clifford index, while Green-Lazarsfeld did not treated this case. Less

Report

(3 results)
  • 1999 Annual Research Report   Final Research Report Summary
  • 1998 Annual Research Report
  • Research Products

    (22 results)

All Other

All Publications (22 results)

  • [Publications] Kato,T and Keem,C.: "G.Martens'dimension theorem for curves of odd gonality"Geom.Dedicata. 78. 301-313 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kato,T., Keem,C.and Ohbuchi,A: "Variety of special linear systems on k-sheeted coverings"Geom.Dedicata. 69. 53-65 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kato,T., Keem,C.and Ohbuchi,A: "Normal generation of line bundles of high degrees on smooth algebraic curves"Adh.Math.Sem.Hamburg. 69. 319-333 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Masumoto,M.: "Extremal lengths of homology classes on Riemann surfaces"J.ReineAugew.Math.. 508. 17-45 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Homma,M.: "Sigular hyperellipitic corves"Manuscripta Math.. 98. 21-36 (1999)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Schmieder,G.and Shiba,M.: "One-parameter variations of the ideal boundaty and compact continuations of a Riemann surfaces"Analysis. 18. 125-130 (1998)

    • Description
      「研究成果報告書概要(和文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KATO, T. and KEEM, C.: "G. Marten's dimension theorem for curves of odd gonality"Geom. Dedicata. 78. 301-313 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KATO, T., KEEM, C. and OHBUCHI, A.: "Variety of special linear systems on k-sheeted coverings"Geom. Dedicata. 69. 53-65 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] KATO, T., KEEM, C. and OHBUCHI, A.: "Normal generation of line bundles of high degree on smooth algebraic curves"Abh. Math. Sem. Univ. Hamburg. 69. 319-333 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] MASUMOTO, M: "Extremal lengths of homology classes on Riemann surfaces"J. Reine Angew. Math. 508. 17-45 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] HOMMA, M: "Singular hyperelliptic curves"Manuscripta Math. 98. 21-36 (1999)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] SCHMIEDER, G. and SHIBA, M: "One-parameter variations of the ideal boundary and compact continuation of a Riemann surfaces"Analysis. 18. 125-130 (1998)

    • Description
      「研究成果報告書概要(欧文)」より
    • Related Report
      1999 Final Research Report Summary
  • [Publications] Kato, T. and Keem, C.: "G. Martens' dimension theorem for curves of odd gonality"Geom. Dedicata. 78. 301-313 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kato, T., Keem, C. and Ohbuchi, A.: "Variety of special linear systems on k-sheeted coverings"Geom. Dedicata. 69. 53-65 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Kato, T., Keem, C. and Ohbuchi, A: "Normal generation of line bundles of high degrees on smooth algebraic curves"Abh. Math. Sem. Hamburg. 69. 319-333 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Masumoto, M.: "Extremal length of homology classes on Riemann surfaces"J. Reine angew. Math.. 508. 17-45 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Homma, M: "Singular hyperelliptic curves"Manuscripta Math.. 98. 21-36 (1999)

    • Related Report
      1999 Annual Research Report
  • [Publications] Schmieder, G. and Shiba, M.: "One-parameter variations of the ideal boundary and compact continuations of a Riemann Surfaces"Analysis. 18. 125-130 (1998)

    • Related Report
      1999 Annual Research Report
  • [Publications] Takao Kato: "Point separation of a two-sheeted disc by bounded analytic functions" Hokkaido Math.J.27. 553-565 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Takao Kato: "Variety of special linear systems on k-sheeted coverings" Geom.Dedicata. 69. 53-65 (1998)

    • Related Report
      1998 Annual Research Report
  • [Publications] Makoto Masumoto: "Extremal lengths of homology classes an Riemann surfaces" J.Reine Angew.Math. (出版予定).

    • Related Report
      1998 Annual Research Report
  • [Publications] Tomomi Gouma: "Ahlfors functions on non-planar Riemann surfaces whose double are hyperelliptic" J.Math.Soc.Japan. 50. 685-695 (1998)

    • Related Report
      1998 Annual Research Report

URL: 

Published: 1998-04-01   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi