Project/Area Number |
10555023
|
Research Category |
Grant-in-Aid for Scientific Research (B).
|
Allocation Type | Single-year Grants |
Section | 展開研究 |
Research Field |
Engineering fundamentals
|
Research Institution | Nihon University |
Principal Investigator |
NAKAMURA Masaaki Nihon University, College of Science and Technology, Professor, 理工学部, 教授 (00017419)
|
Co-Investigator(Kenkyū-buntansha) |
IKEDA Tsutomu Ryukoku University, Faculty of Science and Technology, Professor, 理工学部, 教授 (50151296)
TABATA Masahisa Kyushu University, Faculty of Mathematics, Professor, 数理学研究院, 教授 (30093272)
IMAI Hitoshi The University of Tokushima, Faculty of Engineering, Professor, 工学部, 教授 (80203298)
MORI Masatake Kyoto University, Research Institute of Mathematical sciences, Professor, 数理解析研究所, 所長(研究者) (20010936)
ZHANG Shao-liang University of Tokyo, Faculty of Technology, Associate Professor, 工学系研究所, 助教授 (20252273)
大森 克史 富山大学, 教育学部, 教授 (20110231)
河原田 秀夫 千葉大学, 工学部, 教授 (90010793)
河村 哲也 お茶の水女子大学, 大学院・人間文化研究科, 教授 (40143383)
|
Project Period (FY) |
1998 – 2000
|
Project Status |
Completed (Fiscal Year 2000)
|
Budget Amount *help |
¥11,200,000 (Direct Cost: ¥11,200,000)
Fiscal Year 2000: ¥3,200,000 (Direct Cost: ¥3,200,000)
Fiscal Year 1999: ¥3,800,000 (Direct Cost: ¥3,800,000)
Fiscal Year 1998: ¥4,200,000 (Direct Cost: ¥4,200,000)
|
Keywords | domain decomposition / parallel computing / PVM / precondition / simulation / Navier-Stokes equation / phase separation / nonlinear problems / PVM (parallel virtual machine) / スペクトル法 / 無限精度 / DDM / Computation Mechanics / Hbgonthm / numeHcal sinulation / FEM / FDM |
Research Abstract |
In the term of the project (three years) many results are obtained. Important results are shown as follows. 1. Development of numerical simulation for computation mechanics. New method of a fast numerical computation. Gauss elimination package using PVM and paralel computaions. Numerical simulation in Infinite precisions. New pre-condition methods. Analysis of numerical integrations. Mesoscopic simulation of concrete materials. 2. Applied and numerical analysis of nonlinear problems. Analysis of the system of phase separations. Error estimates using Hausdorff metric. Code of finite element methods for mandtle convections. Analysis of reaction-diffusion systems. Navier-Stokes equations with friction type boundary conditions. Numerical methods for free boundary problems. Analysis of Ginzburg-Landau equation. 3. Numerical simulations of several fluid dynamics. Two-phase flows. Navier-Stokes flows.
|